Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
Sci Rep. 2018 Jul 13;8(1):10634. doi: 10.1038/s41598-018-28858-0.
Fluorescence fluctuation spectroscopy has become a popular toolbox for non-disruptive analysis of molecular interactions in living cells. The quantification of protein oligomerization in the native cellular environment is highly relevant for a detailed understanding of complex biological processes. An important parameter in this context is the molecular brightness, which serves as a direct measure of oligomerization and can be easily extracted from temporal or spatial fluorescence fluctuations. However, fluorescent proteins (FPs) typically used in such studies suffer from complex photophysical transitions and limited maturation, inducing non-fluorescent states. Here, we show how these processes strongly affect molecular brightness measurements. We perform a systematic characterization of non-fluorescent states for commonly used FPs and provide a simple guideline for accurate, unbiased oligomerization measurements in living cells. Further, we focus on novel red FPs and demonstrate that mCherry2, an mCherry variant, possesses superior properties with regards to precise quantification of oligomerization.
荧光波动光谱学已成为一种流行的工具包,用于非侵入性分析活细胞中的分子相互作用。在天然细胞环境中定量蛋白质寡聚化对于深入了解复杂的生物过程非常重要。在这方面的一个重要参数是分子亮度,它可作为寡聚化的直接度量标准,并且可以从时间或空间荧光波动中轻松提取。然而,此类研究中通常使用的荧光蛋白(FP)会经历复杂的光物理转变和有限的成熟过程,从而诱导非荧光状态。在这里,我们展示了这些过程如何强烈影响分子亮度测量。我们对常用 FP 的非荧光状态进行了系统的表征,并为在活细胞中进行准确、无偏的寡聚化测量提供了简单的指南。此外,我们还专注于新型红色 FP,并证明了 mCherry2(一种 mCherry 变体)在精确量化寡聚化方面具有优越的性能。