Suppr超能文献

长期空气污染对健康的影响:暴露预测方法的影响

Health effects of long-term air pollution: influence of exposure prediction methods.

作者信息

Kim Sun-Young, Sheppard Lianne, Kim Ho

机构信息

Departments of aEnvironmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.

出版信息

Epidemiology. 2009 May;20(3):442-50. doi: 10.1097/EDE.0b013e31819e4331.

Abstract

BACKGROUND

Air pollution studies increasingly estimate individual-level exposures from area-based measurements by using exposure prediction methods such as nearest-monitor and kriging predictions. However, little is known about the properties of these methods for health effects estimation. This simulation study explores how 2 common prediction approaches for fine particulate matter (PM2.5) affect relative risk estimates for cardiovascular events in a single geographic area.

METHODS

We estimated 2 sets of parameters to define correlation structures from 2002 data on PM2.5 in the Los Angeles area, and selected additional parameters to evaluate various correlation features. For each structure, annual average PM2.5 was generated at 22 monitoring sites and 2000 preselected individual locations in Los Angeles. Associated survival time until cardiovascular event was simulated for 10,000 hypothetical subjects. Using PM2.5 generated at monitoring sites, we predicted PM2.5 at subject locations by nearest-monitor and kriging interpolation. Finally, we estimated relative risks of the effect of PM2.5 on time to cardiovascular event.

RESULTS

Health effect estimates for cardiovascular events had higher or similar coverage probability for kriging compared with nearest-monitor exposures. The lower mean square error of nearest monitor prediction resulted from more precise but biased health effect estimates. The difference between these approaches dramatically moderated when spatial correlation increased and geographic characteristics were included in the mean model.

CONCLUSIONS

When the underlying exposure distribution has a large amount of spatial dependence, both kriging and nearest-monitor predictions gave good health effect estimates. For exposure with little spatial dependence, kriging exposure was preferable but gave very uncertain estimates.

摘要

背景

空气污染研究越来越多地通过使用诸如最近监测点和克里金法预测等暴露预测方法,从基于区域的测量中估计个体水平的暴露情况。然而,对于这些方法在健康影响评估方面的特性知之甚少。本模拟研究探讨了两种常见的细颗粒物(PM2.5)预测方法如何影响单个地理区域中心血管事件的相对风险估计。

方法

我们根据洛杉矶地区2002年PM2.5的数据估计了两组参数来定义相关结构,并选择了其他参数来评估各种相关特征。对于每种结构,在洛杉矶的22个监测点和2000个预先选定的个体位置生成年度平均PM2.5。为10000名假设的受试者模拟了直至心血管事件的相关生存时间。利用在监测点生成的PM2.5,我们通过最近监测点法和克里金插值法预测受试者位置的PM2.5。最后,我们估计了PM2.5对心血管事件发生时间影响的相对风险。

结果

与最近监测点暴露相比,克里金法对心血管事件的健康影响估计具有更高或相似的覆盖概率。最近监测点预测的较低均方误差源于更精确但有偏差的健康影响估计。当空间相关性增加且均值模型中纳入地理特征时,这些方法之间的差异显著减小。

结论

当潜在的暴露分布具有大量空间依赖性时,克里金法和最近监测点预测都能给出良好的健康影响估计。对于空间依赖性较小的暴露,克里金法暴露更可取,但估计非常不确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验