Suppr超能文献

JEDI:宏观和微观组织性质的联合估计扩散成像。

JEDI: Joint Estimation Diffusion Imaging of macroscopic and microscopic tissue properties.

机构信息

Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA, USA.

Center for Functional MRI, University of California at San Diego, La Jolla, CA, USA.

出版信息

Magn Reson Med. 2020 Aug;84(2):966-990. doi: 10.1002/mrm.28141. Epub 2020 Jan 9.

Abstract

PURPOSE

A new method for enhancing the sensitivity of diffusion MRI (dMRI) by combining the data from single (sPFG) and double (dPFG) pulsed field gradient experiments is presented.

METHODS

This method uses our JESTER framework to combine microscopic anisotropy information from dFPG experiments using a new method called diffusion tensor subspace imaging (DiTSI) to augment the macroscopic anisotropy information from sPFG data analyzed using our guided by entropy spectrum pathways method. This new method, called joint estimation diffusion imaging (JEDI), combines the sensitivity to macroscopic diffusion anisotropy of sPFG with the sensitivity to microscopic diffusion anisotropy of dPFG methods.

RESULTS

Its ability to produce significantly more detailed anisotropy maps and more complete fiber tracts than existing methods within both brain white matter (WM) and gray matter (GM) is demonstrated on normal human subjects on data collected using a novel fast, robust, and clinically feasible sPFG/dPFG acquisition.

CONCLUSIONS

The potential utility of this method is suggested by an initial demonstration of its ability to mitigate the problem of gyral bias. The capability of more completely characterizing the tissue structure and connectivity throughout the entire brain has broad implications for the utility and scope of dMRI in a wide range of research and clinical applications.

摘要

目的

提出了一种新的方法,通过结合单(sPFG)和双(dPFG)脉冲梯度实验的数据来提高扩散磁共振成像(dMRI)的灵敏度。

方法

该方法使用我们的 JESTER 框架,通过一种称为扩散张量子空间成像(DiTSI)的新方法,结合使用我们的基于熵谱途径方法分析 sPFG 数据的微观各向异性信息,来增强宏观各向异性信息。这种新方法称为联合估计扩散成像(JEDI),它结合了 sPFG 对宏观扩散各向异性的灵敏度和 dPFG 方法对微观扩散各向异性的灵敏度。

结果

在使用新型快速、稳健且临床可行的 sPFG/dPFG 采集方法对正常人体数据进行的研究中,该方法在脑白质(WM)和灰质(GM)中都能够生成比现有方法更详细的各向异性图和更完整的纤维束。

结论

初步证明该方法能够减轻脑回偏差问题,表明了该方法的潜在应用价值。更完整地描述整个大脑的组织结构和连接性的能力,对 dMRI 在广泛的研究和临床应用中的应用和范围具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c549/7180135/fe5ea7e8a863/nihms-1575094-f0001.jpg

相似文献

引用本文的文献

6
Active Cortex Tractography.主动皮质纤维束成像
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:467-476. doi: 10.1007/978-3-030-87234-2_44. Epub 2021 Sep 21.

本文引用的文献

4
On modeling.关于建模。
Magn Reson Med. 2018 Jun;79(6):3172-3193. doi: 10.1002/mrm.27101. Epub 2018 Mar 1.
5
6
Surface-enhanced tractography (SET).表面增强示踪技术(SET)。
Neuroimage. 2018 Apr 1;169:524-539. doi: 10.1016/j.neuroimage.2017.12.036. Epub 2017 Dec 16.
9
Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition.通过熵场分解检测多元数据中的时空模式
J Phys A Math Theor. 2016 Sep 30;49(39). doi: 10.1088/1751-8113/49/39/395001. Epub 2016 Sep 6.
10
The Lamellar Structure of the Brain Fiber Pathways.脑纤维通路的板层结构。
Neural Comput. 2016 Nov;28(11):2533-2556. doi: 10.1162/NECO_a_00896. Epub 2016 Sep 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验