Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA, USA.
Center for Functional MRI, University of California at San Diego, La Jolla, CA, USA.
Magn Reson Med. 2020 Aug;84(2):966-990. doi: 10.1002/mrm.28141. Epub 2020 Jan 9.
A new method for enhancing the sensitivity of diffusion MRI (dMRI) by combining the data from single (sPFG) and double (dPFG) pulsed field gradient experiments is presented.
This method uses our JESTER framework to combine microscopic anisotropy information from dFPG experiments using a new method called diffusion tensor subspace imaging (DiTSI) to augment the macroscopic anisotropy information from sPFG data analyzed using our guided by entropy spectrum pathways method. This new method, called joint estimation diffusion imaging (JEDI), combines the sensitivity to macroscopic diffusion anisotropy of sPFG with the sensitivity to microscopic diffusion anisotropy of dPFG methods.
Its ability to produce significantly more detailed anisotropy maps and more complete fiber tracts than existing methods within both brain white matter (WM) and gray matter (GM) is demonstrated on normal human subjects on data collected using a novel fast, robust, and clinically feasible sPFG/dPFG acquisition.
The potential utility of this method is suggested by an initial demonstration of its ability to mitigate the problem of gyral bias. The capability of more completely characterizing the tissue structure and connectivity throughout the entire brain has broad implications for the utility and scope of dMRI in a wide range of research and clinical applications.
提出了一种新的方法,通过结合单(sPFG)和双(dPFG)脉冲梯度实验的数据来提高扩散磁共振成像(dMRI)的灵敏度。
该方法使用我们的 JESTER 框架,通过一种称为扩散张量子空间成像(DiTSI)的新方法,结合使用我们的基于熵谱途径方法分析 sPFG 数据的微观各向异性信息,来增强宏观各向异性信息。这种新方法称为联合估计扩散成像(JEDI),它结合了 sPFG 对宏观扩散各向异性的灵敏度和 dPFG 方法对微观扩散各向异性的灵敏度。
在使用新型快速、稳健且临床可行的 sPFG/dPFG 采集方法对正常人体数据进行的研究中,该方法在脑白质(WM)和灰质(GM)中都能够生成比现有方法更详细的各向异性图和更完整的纤维束。
初步证明该方法能够减轻脑回偏差问题,表明了该方法的潜在应用价值。更完整地描述整个大脑的组织结构和连接性的能力,对 dMRI 在广泛的研究和临床应用中的应用和范围具有广泛的意义。