Suppr超能文献

深呼吸测试:基于中位数的呼气-吸气差值是首选测量方法。

The deep breathing test: median-based expiration-inspiration difference is the measure of choice.

作者信息

Löllgen Deborah, Müeck-Weymann Michael, Beise Reinhard D

机构信息

Biocomfort Diagnostics GmbH & Co. KG, Bernhäuser Strasse 17, 73765 Neuhausen, Germany.

出版信息

Muscle Nerve. 2009 Apr;39(4):536-44. doi: 10.1002/mus.21242.

Abstract

Heart rate variability (HRV) has become an important parameter for the assessment of autonomic function in many areas of medicine. In particular, respiratory sinus arrhythmia measured during the deep breathing test (DBT) is often used. Results are usually expressed in common time-domain parameters. A "most preferred measure" has not yet been identified. We investigated the sensitivity of the DBT to the following anomalies: in-test variance; shifts of mean heart rate; premature ventricular contractions; and breathing rate deviations. Frequency and magnitude of the anomalies were determined in a set of real DBTs (n=514) and transferred to computer simulations to mimic realistic conditions. The sensitivity of standard deviation, mean circular resultant (MCR), root mean square of successive differences (RMSSD), and four types of expiration-inspiration (E-I) difference were quantified statistically. Median-based E-I differences, E-I ratio, and MCR were most resistant to the anomalies. E-I difference derived by median values should be used preferentially, providing the highest precision and independence from heart rate.

摘要

心率变异性(HRV)已成为医学许多领域中评估自主神经功能的重要参数。特别是,在深呼吸测试(DBT)期间测量的呼吸性窦性心律失常经常被使用。结果通常以常见的时域参数表示。尚未确定“最优选的测量方法”。我们研究了DBT对以下异常情况的敏感性:测试中的变异性;平均心率的变化;室性早搏;以及呼吸频率偏差。在一组实际的DBT(n = 514)中确定异常的频率和幅度,并将其转移到计算机模拟中以模拟实际情况。对标准差、平均圆形结果(MCR)、逐次差值的均方根(RMSSD)以及四种类型的呼气-吸气(E-I)差值的敏感性进行了统计量化。基于中位数的E-I差值、E-I比值和MCR对异常情况的抵抗力最强。应优先使用由中位数得出的E-I差值,其具有最高的精度且不受心率影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验