Suppr超能文献

探索基于 PNO 的局域耦合簇计算方法在过渡金属配合物中的精度极限。

Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.

FAccTs GmbH, Rolandstrasse 67, 50677 Köln, Germany.

出版信息

J Chem Theory Comput. 2023 Apr 11;19(7):2039-2047. doi: 10.1021/acs.jctc.3c00087. Epub 2023 Mar 14.

Abstract

While the domain-based local pair natural orbital coupled-cluster method with singles, doubles, and perturbative triples (DLPNO-CCSD(T)) has proven instrumental for computing energies and properties of large and complex systems accurately, calculations on first-row transition metals with a complex electronic structure remain challenging. In this work, we identify and address the two main error sources that influence the DLPNO-CCSD(T) accuracy in this context, namely, (i) correlation effects from the 3s and 3p semicore orbitals and (ii) dynamic correlation-induced orbital relaxation (DCIOR) effects that are not described by the local MP2 guess. We present a computational strategy that allows us to completely eliminate the DLPNO error associated with semicore correlation effects, while increasing, at the same time, the efficiency of the method. As regards the DCIOR effects, we introduce a diagnostic for estimating the deviation between DLPNO-CCSD(T) and canonical CCSD(T) for systems with significant orbital relaxation.

摘要

虽然基于域的局部对自然轨道耦合簇方法与单重态、双重态和微扰三重态(DLPNO-CCSD(T))已被证明对准确计算大而复杂系统的能量和性质非常有用,但对于具有复杂电子结构的第一行过渡金属的计算仍然具有挑战性。在这项工作中,我们确定并解决了影响这方面 DLPNO-CCSD(T)准确性的两个主要误差源,即(i)来自 3s 和 3p 半芯轨道的相关效应和(ii)不能由局部 MP2 猜测描述的动态相关诱导轨道弛豫(DCIOR)效应。我们提出了一种计算策略,使我们能够完全消除与半芯相关效应相关的 DLPNO 误差,同时提高方法的效率。关于 DCIOR 效应,我们引入了一种诊断方法来估计具有显著轨道弛豫的系统中 DLPNO-CCSD(T)和正则 CCSD(T)之间的偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9737/10100528/aea9b79bc177/ct3c00087_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验