Suppr超能文献

秀丽隐杆线虫的mig-6编码影响双端锥细胞迁移不同方面的帕皮林异构体,并与mig-17和IV型胶原蛋白发生遗传相互作用。

C. elegans mig-6 encodes papilin isoforms that affect distinct aspects of DTC migration, and interacts genetically with mig-17 and collagen IV.

作者信息

Kawano Takehiro, Zheng Hong, Merz David C, Kohara Yuji, Tamai Katsuyuki K, Nishiwaki Kiyoji, Culotti Joseph G

机构信息

Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, M5G 1X5, Canada.

出版信息

Development. 2009 May;136(9):1433-42. doi: 10.1242/dev.028472. Epub 2009 Mar 18.

Abstract

The gonad arms of C. elegans hermaphrodites acquire invariant shapes by guided migrations of distal tip cells (DTCs), which occur in three phases that differ in the direction and basement membrane substrata used for movement. We found that mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of DTC migration. Both MIG-6 isoforms have a predicted N-terminal papilin cassette, lagrin repeats and C-terminal Kunitz-type serine proteinase inhibitory domains. We show that mutations affecting MIG-6L specifically and cell-autonomously decrease the rate of post-embryonic DTC migration, mimicking a post-embryonic collagen IV deficit. We also show that MIG-6S has two separable functions - one in embryogenesis and one in the second phase of DTC migration. Genetic data suggest that MIG-6S functions in the same pathway as the MIG-17/ADAMTS metalloproteinase for guiding phase 2 DTC migrations, and MIG-17 is abnormally localized in mig-6 class-s mutants. Genetic data also suggest that MIG-6S and non-fibrillar network collagen IV play antagonistic roles to ensure normal phase 2 DTC guidance.

摘要

秀丽隐杆线虫雌雄同体的性腺臂通过远端顶端细胞(DTCs)的定向迁移获得不变的形状,这种迁移分为三个阶段,在迁移方向和所利用的基底膜基质方面存在差异。我们发现mig-6编码细胞外基质蛋白papilin的长(MIG-6L)和短(MIG-6S)异构体,它们是DTC迁移不同方面所必需的。两种MIG-6异构体都有一个预测的N端papilin结构域、lagrin重复序列和C端Kunitz型丝氨酸蛋白酶抑制结构域。我们表明,特异性影响MIG-6L且细胞自主的突变会降低胚胎后DTC迁移的速率,这类似于胚胎后IV型胶原缺乏。我们还表明,MIG-6S有两个可分离的功能——一个在胚胎发生中,一个在DTC迁移的第二阶段。遗传数据表明,MIG-6S在与MIG-17/ADAMTS金属蛋白酶相同的途径中发挥作用,以指导第二阶段的DTC迁移,并且MIG-17在mig-6类s突变体中定位异常。遗传数据还表明,MIG-6S和非纤维状网络IV型胶原发挥拮抗作用,以确保第二阶段DTC的正常引导。

相似文献

2
Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in Caenorhabditis elegans.
PLoS One. 2020 Dec 2;15(12):e0240571. doi: 10.1371/journal.pone.0240571. eCollection 2020.
3
The novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans.
Genetics. 2014 Feb;196(2):471-9. doi: 10.1534/genetics.113.157685. Epub 2013 Dec 6.
4
Mutations in fibulin-1 and collagen IV suppress the short healthspan of mig-17/ADAMTS mutants in Caenorhabditis elegans.
PLoS One. 2024 Jul 9;19(7):e0305396. doi: 10.1371/journal.pone.0305396. eCollection 2024.
6
MIG-17/ADAMTS controls cell migration by recruiting nidogen to the basement membrane in C. elegans.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20804-9. doi: 10.1073/pnas.0804055106. Epub 2008 Dec 22.
7
mig-38, a novel gene that regulates distal tip cell turning during gonadogenesis in C. elegans hermaphrodites.
Dev Biol. 2012 Aug 15;368(2):404-14. doi: 10.1016/j.ydbio.2012.06.011. Epub 2012 Jun 23.
8
A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans.
Curr Biol. 2004 Nov 23;14(22):2011-8. doi: 10.1016/j.cub.2004.10.047.
9
The Role of Tissue Inhibitors of Metalloproteinases in Organ Development and Regulation of ADAMTS Family Metalloproteinases in .
Genetics. 2019 Jun;212(2):523-535. doi: 10.1534/genetics.119.301795. Epub 2019 Apr 16.
10
An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans.
Nat Cell Biol. 2004 Jan;6(1):31-7. doi: 10.1038/ncb1079. Epub 2003 Dec 21.

引用本文的文献

3
Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture.
Res Sq. 2025 Feb 14:rs.3.rs-5962240. doi: 10.21203/rs.3.rs-5962240/v1.
4
Chondroitin sulfate in invertebrate development.
Proteoglycan Res. 2024 Oct-Dec;2(4). doi: 10.1002/pgr2.70009. Epub 2024 Nov 5.
5
Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in .
Front Cell Dev Biol. 2024 Aug 19;12:1436975. doi: 10.3389/fcell.2024.1436975. eCollection 2024.
6
Transcriptomic Analysis of the Spatiotemporal Axis of Oogenesis and Fertilization in .
bioRxiv. 2024 Jun 4:2024.06.03.597235. doi: 10.1101/2024.06.03.597235.
7
The matrisome landscape controlling in vivo germ cell fates.
Nat Commun. 2024 May 17;15(1):4200. doi: 10.1038/s41467-024-48283-4.
8
Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development.
BMC Genomics. 2024 Feb 7;25(1):150. doi: 10.1186/s12864-023-09898-x.
9
Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage.
J Cell Biol. 2023 Jan 2;222(1). doi: 10.1083/jcb.202112096. Epub 2022 Oct 25.

本文引用的文献

1
Genetic balancers.
WormBook. 2006 Apr 6:1-32. doi: 10.1895/wormbook.1.89.1.
2
Prodomain-dependent tissue targeting of an ADAMTS protease controls cell migration in Caenorhabditis elegans.
EMBO J. 2007 Jun 6;26(11):2607-20. doi: 10.1038/sj.emboj.7601718. Epub 2007 May 10.
5
A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans.
Curr Biol. 2004 Nov 23;14(22):2011-8. doi: 10.1016/j.cub.2004.10.047.
6
GON-1 and fibulin have antagonistic roles in control of organ shape.
Curr Biol. 2004 Nov 23;14(22):2005-10. doi: 10.1016/j.cub.2004.11.006.
7
ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage.
J Biol Chem. 2004 Dec 3;279(49):51323-30. doi: 10.1074/jbc.M409565200. Epub 2004 Sep 20.
8
An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans.
Nat Cell Biol. 2004 Jan;6(1):31-7. doi: 10.1038/ncb1079. Epub 2003 Dec 21.
10
Metalloproteases: carving out a role in axon guidance.
Neuron. 2003 Feb 20;37(4):559-62. doi: 10.1016/s0896-6273(03)00089-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验