Huang Gang, Takeuchi Yasuhiro
Graduate School of Science and Technology, Shizuoka University, Hamamatsu 4328561, Japan.
J Math Biol. 2011 Jul;63(1):125-39. doi: 10.1007/s00285-010-0368-2. Epub 2010 Sep 26.
In this paper, we derive and study the classical SIR, SIS, SEIR and SEI models of epidemiological dynamics with time delays and a general incidence rate. By constructing Lyapunov functionals, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is shown. This analysis extends and develops further our previous results and can be applied to the other biological dynamics, including such as single species population delay models and chemostat models with delay response.
在本文中,我们推导并研究了具有时滞和一般发病率的经典流行病学动力学SIR、SIS、SEIR和SEI模型。通过构造Lyapunov泛函,证明了无病平衡点和地方病平衡点的全局渐近稳定性。该分析扩展并进一步发展了我们之前的结果,并且可以应用于其他生物动力学,包括单物种种群时滞模型和具有时滞响应的恒化器模型等。