Suppr超能文献

组合文库、药物、天然产物及小分子储存库的小分子库的化学信息学分析。

Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository.

作者信息

Singh Narender, Guha Rajarshi, Giulianotti Marc A, Pinilla Clemencia, Houghten Richard A, Medina-Franco Jose L

机构信息

Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, USA.

出版信息

J Chem Inf Model. 2009 Apr;49(4):1010-24. doi: 10.1021/ci800426u.

Abstract

A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds, and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity, and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR, and natural products databases. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different than current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries is located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space.

摘要

本文提出了一种多标准方法,用于对最近开发的四个组合文库与药物、分子文库小分子储存库(MLSMR)和天然产物进行比较分析。从物理化学性质、支架和指纹方面对化合物数据库进行了评估。该方法能够分析性质空间覆盖范围、集合之间的重叠程度、支架和结构多样性以及整体结构新颖性。使用R-NN曲线方法评估组合文库与药物之间的重叠程度,该方法测量嵌入目标集合化学空间中的查询分子周围化学空间的密度。本研究中所研究的组合文库展示出在药物、MLSMR和天然产物数据库中未观察到的支架。基于指纹的比较表明,这些组合文库在结构上与现有药物不同。R-NN曲线方法表明,组合文库中的一部分分子位于药物的性质空间内。然而,R-NN分析还表明,几个组合文库中有大量分子位于药物空间的稀疏区域。

相似文献

2
Expanding the medicinally relevant chemical space with compound libraries.
Drug Discov Today. 2012 Jul;17(13-14):718-26. doi: 10.1016/j.drudis.2012.04.001. Epub 2012 Apr 10.
3
Increased diversity of libraries from libraries: chemoinformatic analysis of bis-diazacyclic libraries.
Chem Biol Drug Des. 2011 May;77(5):328-42. doi: 10.1111/j.1747-0285.2011.01100.x. Epub 2011 Mar 1.
6
Capturing nature's diversity.
PLoS One. 2015 Apr 22;10(4):e0120942. doi: 10.1371/journal.pone.0120942. eCollection 2015.
7
Molecular scaffold analysis of natural products databases in the public domain.
Chem Biol Drug Des. 2012 Nov;80(5):717-24. doi: 10.1111/cbdd.12011. Epub 2012 Aug 31.
9
Natural products as leads to potential drugs: an old process or the new hope for drug discovery?
J Med Chem. 2008 May 8;51(9):2589-99. doi: 10.1021/jm0704090. Epub 2008 Apr 5.
10
Characterization of the Chemical Space of Known and Readily Obtainable Natural Products.
J Chem Inf Model. 2018 Aug 27;58(8):1518-1532. doi: 10.1021/acs.jcim.8b00302. Epub 2018 Aug 1.

引用本文的文献

2
Time-Dependent Comparison of the Structural Variations of Natural Products and Synthetic Compounds.
Int J Mol Sci. 2024 Oct 25;25(21):11475. doi: 10.3390/ijms252111475.
3
Chemoinformatic Characterization of NAPROC-13: A Database for Natural Product C NMR Dereplication.
J Nat Prod. 2024 Sep 27;87(9):2216-2229. doi: 10.1021/acs.jnatprod.4c00530. Epub 2024 Sep 13.
4
Chemical Multiverse and Diversity of Food Chemicals.
J Chem Inf Model. 2024 Feb 26;64(4):1229-1244. doi: 10.1021/acs.jcim.3c01617. Epub 2024 Feb 14.
5
Challenges in natural product-based drug discovery assisted with -based methods.
RSC Adv. 2023 Oct 30;13(45):31578-31594. doi: 10.1039/d3ra06831e. eCollection 2023 Oct 26.
6
Art driven by visual representations of chemical space.
J Cheminform. 2023 Oct 21;15(1):100. doi: 10.1186/s13321-023-00770-4.
7
Structure-Based Discovery of Inhibitors of the SARS-CoV-2 Nsp14 N7-Methyltransferase.
J Med Chem. 2023 Jun 22;66(12):7785-7803. doi: 10.1021/acs.jmedchem.2c02120. Epub 2023 Jun 9.
8
Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery.
Biochemistry (Mosc). 2022 Jan;87(Suppl 1):S192-S177. doi: 10.1134/S0006297922140152.
10
Exploring the chemical space of protein-protein interaction inhibitors through machine learning.
Sci Rep. 2021 Jun 28;11(1):13369. doi: 10.1038/s41598-021-92825-5.

本文引用的文献

2
Network pharmacology: the next paradigm in drug discovery.
Nat Chem Biol. 2008 Nov;4(11):682-90. doi: 10.1038/nchembio.118.
3
Natural products in drug discovery.
Drug Discov Today. 2008 Oct;13(19-20):894-901. doi: 10.1016/j.drudis.2008.07.004. Epub 2008 Aug 22.
4
Where is the hope for drug discovery? Let history tell the future.
Drug Discov Today. 2009 Feb;14(3-4):115-9. doi: 10.1016/j.drudis.2008.07.002. Epub 2008 Aug 21.
5
Conformation-opioid activity relationships of bicyclic guanidines from 3D similarity analysis.
Bioorg Med Chem. 2008 Jun 1;16(11):5932-8. doi: 10.1016/j.bmc.2008.04.061. Epub 2008 Apr 27.
6
Application of combinatorial chemistry science on modern drug discovery.
J Comb Chem. 2008 May-Jun;10(3):345-54. doi: 10.1021/cc700187t. Epub 2008 Jan 26.
8
DrugBank: a knowledgebase for drugs, drug actions and drug targets.
Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. doi: 10.1093/nar/gkm958. Epub 2007 Nov 29.
9
A similarity-based data-fusion approach to the visual characterization and comparison of compound databases.
Chem Biol Drug Des. 2007 Nov;70(5):393-412. doi: 10.1111/j.1747-0285.2007.00579.x. Epub 2007 Oct 10.
10
Large compound databases for structure-activity relationships studies in drug discovery.
Mini Rev Med Chem. 2007 Aug;7(8):851-60. doi: 10.2174/138955707781387858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验