Suppr超能文献

一种用于环境空气污染暴露土地利用回归建模的距离衰减变量选择策略。

A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures.

作者信息

Su J G, Jerrett M, Beckerman B

机构信息

Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, CA 94720-7360, USA.

出版信息

Sci Total Environ. 2009 Jun 1;407(12):3890-8. doi: 10.1016/j.scitotenv.2009.01.061. Epub 2009 Mar 21.

Abstract

Land use regression (LUR) has emerged as an effective and economical means of estimating air pollution exposures for epidemiological studies. To date, no systematic method has been developed for optimizing the variable selection process. Traditionally, a limited number of buffer distances assumed having the highest correlations with measured pollutant concentrations are used in the manual stepwise selection process or a model transferred from another urban area. In this paper we propose a novel and systematic way of modeling long-term average air pollutant concentrations through "A Distance Decay REgression Selection Strategy" (ADDRESS). The selection process includes multiple steps and, at each step, a full spectrum of correlation coefficients and buffer distance decay curves are used to select a spatial covariate of the highest correlation (compared to other variables) at its optimized buffer distance. At the first step, the series of distance decay curves is constructed using the measured concentrations against the chosen spatial covariates. A variable with the highest correlation to pollutant levels at its optimized buffer distance is chosen as the first predictor of the LUR model from all the distance decay curves. Starting from the second step, the prediction residuals are used to construct new series of distance decay curves and the variable of the highest correlation at its optimized buffer distance is chosen to be added to the model. This process continues until a variable being added does not contribute significantly (p>0.10) to the model performance. The distance decay curve yields a visualization of change and trend of correlation between the spatial covariates and air pollution concentrations or their prediction residuals, providing a transparent and efficient means of selecting optimized buffer distances. Empirical comparisons suggested that the ADDRESS method produced better results than a manual stepwise selection process of limited buffer distances. The method also enables researchers to understand the likely scale of variables that influence pollution levels, which has potentially important ramifications for planning and epidemiological studies.

摘要

土地利用回归(LUR)已成为一种用于估算流行病学研究中空气污染暴露水平的有效且经济的方法。迄今为止,尚未开发出用于优化变量选择过程的系统方法。传统上,在手动逐步选择过程中或从另一个城市地区转移的模型中,使用有限数量的假定与测量的污染物浓度具有最高相关性的缓冲距离。在本文中,我们提出了一种新颖且系统的方法,即通过“距离衰减回归选择策略”(ADDRESS)对长期平均空气污染物浓度进行建模。选择过程包括多个步骤,并且在每个步骤中,使用全谱相关系数和缓冲距离衰减曲线来选择在其优化缓冲距离处具有最高相关性(与其他变量相比)的空间协变量。在第一步中,使用测量浓度与所选空间协变量构建一系列距离衰减曲线。从所有距离衰减曲线中选择在其优化缓冲距离处与污染物水平具有最高相关性的变量作为LUR模型的第一个预测变量。从第二步开始,使用预测残差构建新的距离衰减曲线系列,并选择在其优化缓冲距离处具有最高相关性的变量添加到模型中。这个过程持续进行,直到添加的变量对模型性能没有显著贡献(p>0.10)。距离衰减曲线直观展示了空间协变量与空气污染浓度或其预测残差之间相关性的变化和趋势,为选择优化缓冲距离提供了一种透明且有效的方法。实证比较表明,ADDRESS方法比有限缓冲距离的手动逐步选择过程产生了更好的结果。该方法还使研究人员能够了解影响污染水平的变量的可能规模,这对规划和流行病学研究具有潜在的重要影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验