Suppr超能文献

测地不变特征:深度中的局部描述符。

Geodesic invariant feature: a local descriptor in depth.

出版信息

IEEE Trans Image Process. 2015 Jan;24(1):236-48. doi: 10.1109/TIP.2014.2378019. Epub 2014 Dec 4.

Abstract

Different from the photometric images, depth images resolve the distance ambiguity of the scene, while the properties, such as weak texture, high noise, and low resolution, may limit the representation ability of the well-developed descriptors, which are elaborately designed for the photometric images. In this paper, a novel depth descriptor, geodesic invariant feature (GIF), is presented for representing the parts of the articulate objects in depth images. GIF is a multilevel feature representation framework, which is proposed based on the nature of depth images. Low-level, geodesic gradient is introduced to obtain the invariance to the articulate motion, such as scale and rotation variation. Midlevel, superpixel clustering is applied to reduce depth image redundancy, resulting in faster processing speed and better robustness to noise. High-level, deep network is used to exploit the nonlinearity of the data, which further improves the classification accuracy. The proposed descriptor is capable of encoding the local structures in the depth data effectively and efficiently. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method.

摘要

与光度图像不同,深度图像解决了场景的距离歧义问题,但其弱纹理、高噪声和低分辨率等特性可能会限制为光度图像精心设计的、具有出色表达能力的描述符。本文提出了一种新的深度描述符——测地不变特征(GIF),用于表示深度图像中关节物体的部分。GIF 是一种多级特征表示框架,它是基于深度图像的性质提出的。引入底层的测地线梯度来获得对关节运动(如比例和旋转变化)的不变性。中层采用超像素聚类来减少深度图像冗余,从而提高处理速度和对噪声的鲁棒性。高层使用深度网络来挖掘数据的非线性,从而进一步提高分类准确性。所提出的描述符能够有效地、高效地对深度数据中的局部结构进行编码。与最先进的方法进行比较,验证了所提方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验