Suppr超能文献

蛋白质中压力依赖的13C化学位移:起源与应用

Pressure-dependent 13C chemical shifts in proteins: origins and applications.

作者信息

Wilton David J, Kitahara Ryo, Akasaka Kazuyuki, Williamson Mike P

机构信息

Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.

出版信息

J Biomol NMR. 2009 May;44(1):25-33. doi: 10.1007/s10858-009-9312-4. Epub 2009 Mar 24.

Abstract

Pressure-dependent (13)C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH(3), CH(2) and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the gamma-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual (13)C alpha shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas (13)C beta shifts retain significant dependence on local compression, making them less useful as structural restraints.

摘要

已测量了巴纳酶和蛋白G中脂肪族碳的压力依赖性(13)C化学位移。在高达200兆帕(2千巴)的压力下,大多数位移变化呈线性,表明具有与压力无关的压缩性。由于键长缩短和键角变化的综合作用,CH(3)、CH(2)和CH碳位移平均分别变化+0.23、-0.09和-0.18 ppm,后者与γ-gauche效应的一种解释相符。此外,还存在一个残基特异性成分,它源于局部压缩和构象变化。为了评估这些效应的相对大小,将蛋白G的残基特异性位移变化转化为结构限制,并使用遗传算法将位移变化转化为二面角限制,从而计算压力作用下的结构变化。结果表明,残余(13)Cα位移主要由二面角变化主导,可用于计算结构变化,而(13)Cβ位移对局部压缩仍有显著依赖性,因此作为结构限制的用途较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验