Klekowicz H, Malinowska U, Piotrowska A J, Wołyńczyk-Gmaj D, Niemcewicz Sz, Durka P J
Faculty of Physics, University of Warsaw, Warszawa, Poland.
Neuroinformatics. 2009 Jun;7(2):147-60. doi: 10.1007/s12021-009-9045-2. Epub 2009 Mar 24.
We present an open, parametric system for automatic detection of EEG artifacts in polysomnographic recordings. It relies on independent parameters reflecting the relative presence of each of the eight types of artifacts in a given epoch. An artifact is marked if any of these parameters exceeds a threshold. These thresholds, set for each parameter separately, can be adjusted via "learning by example" procedure (multidimensional minimization with computationally intensive cost function), which can be used to automatically tune the parameters to new types of datasets, environments or requirements. Performance of the system, evaluated on 103 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the inter-expert agreement. To make this statement well defined, we review the methodology of evaluation for this kind of detection systems. Complete source code is available from http://eeg.pl; a user-friendly version with Java interface is available from http://signalml.org.
我们提出了一种用于在多导睡眠图记录中自动检测脑电图伪迹的开放式参数系统。它依赖于反映给定时间段内八种伪迹类型各自相对存在情况的独立参数。如果这些参数中的任何一个超过阈值,则会标记一个伪迹。这些分别为每个参数设置的阈值可以通过“示例学习”程序(使用计算密集型成本函数的多维最小化)进行调整,该程序可用于自动将参数调整到新类型的数据集、环境或要求。该系统在103份整夜多导睡眠图记录上进行评估的性能显示,与人类专家的决策一致性接近专家间的一致性。为了使这一表述明确,我们回顾了此类检测系统的评估方法。完整的源代码可从http://eeg.pl获取;具有Java界面的用户友好版本可从http://signalml.org获取。