Suppr超能文献

上丘对额叶眼区扫视前活动的调制

Modulation of presaccadic activity in the frontal eye field by the superior colliculus.

作者信息

Berman Rebecca A, Joiner Wilsaan M, Cavanaugh James, Wurtz Robert H

机构信息

Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20982-4435, USA.

出版信息

J Neurophysiol. 2009 Jun;101(6):2934-42. doi: 10.1152/jn.00053.2009. Epub 2009 Mar 25.

Abstract

A cascade of neuronal signals precedes each saccadic eye movement to targets in the visual scene. In the cerebral cortex, this neuronal processing culminates in the frontal eye field (FEF), where neurons have bursts of activity before the saccade. This presaccadic activity is typically considered to drive downstream activity in the intermediate layers of the superior colliculus (SC), which receives direct projections from FEF. Consequently, the FEF activity is thought to be determined solely by earlier cortical processing and unaffected by activity in the SC. Recent evidence of an ascending path from the SC to FEF raises the possibility, however, that presaccadic activity in the FEF may also depend on input from the SC. Here we tested this possibility by recording from single FEF neurons during the reversible inactivation of SC. Our results indicate that presaccadic activity in the FEF does not require SC input: we never observed a significant reduction in FEF presaccadic activity when the SC was inactivated. Unexpectedly, in a third of experiments, SC inactivation elicited a significant increase in FEF presaccadic activity. The passive visual response of FEF neurons, in contrast, was virtually unaffected by inactivation of the SC. These findings show that presaccadic activity in the FEF does not originate in the SC but nevertheless may be influenced by modulatory signals ascending from the SC.

摘要

在每次向视觉场景中的目标进行眼球快速运动之前,都会有一连串的神经元信号。在大脑皮层中,这种神经元处理过程在额叶眼区(FEF)达到顶点,在眼球快速运动之前,该区域的神经元会有活动爆发。这种扫视前的活动通常被认为会驱动上丘(SC)中间层的下游活动,上丘接收来自额叶眼区的直接投射。因此,额叶眼区的活动被认为仅由早期的皮层处理决定,不受上丘活动的影响。然而,最近有证据表明存在一条从上丘到额叶眼区的上行通路,这就增加了一种可能性,即额叶眼区的扫视前活动也可能依赖于来自上丘的输入。在这里,我们通过在可逆性失活上丘期间记录单个额叶眼区神经元的活动来测试这种可能性。我们的结果表明,额叶眼区的扫视前活动不需要上丘的输入:当上丘失活时,我们从未观察到额叶眼区扫视前活动有显著降低。出乎意料的是,在三分之一的实验中,上丘失活引发了额叶眼区扫视前活动的显著增加。相比之下,额叶眼区神经元的被动视觉反应实际上不受上丘失活的影响。这些发现表明,额叶眼区的扫视前活动并非起源于上丘,但仍可能受到从上丘传来的调制信号的影响。

相似文献

1
Modulation of presaccadic activity in the frontal eye field by the superior colliculus.
J Neurophysiol. 2009 Jun;101(6):2934-42. doi: 10.1152/jn.00053.2009. Epub 2009 Mar 25.
3
4
Frontal eye field neurons orthodromically activated from the superior colliculus.
J Neurophysiol. 1998 Dec;80(6):3331-5. doi: 10.1152/jn.1998.80.6.3331.
7
Interaction of the frontal eye field and superior colliculus for saccade generation.
J Neurophysiol. 2001 Feb;85(2):804-15. doi: 10.1152/jn.2001.85.2.804.
8
A distinct contribution of the frontal eye field to the visual representation of saccadic targets.
J Neurosci. 2014 Mar 5;34(10):3687-98. doi: 10.1523/JNEUROSCI.3824-13.2014.
9
Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.
J Neurophysiol. 2001 Apr;85(4):1673-85. doi: 10.1152/jn.2001.85.4.1673.
10
Deficits in saccade target selection after inactivation of superior colliculus.
Nat Neurosci. 2004 Jul;7(7):757-63. doi: 10.1038/nn1269. Epub 2004 Jun 13.

引用本文的文献

1
Two-Dimensional Perisaccadic Visual Mislocalization in Rhesus Macaque Monkeys.
eNeuro. 2025 Jun 6;12(6). doi: 10.1523/ENEURO.0547-24.2025. Print 2025 Jun.
2
Sensory tuning in neuronal movement commands.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2305759120. doi: 10.1073/pnas.2305759120. Epub 2023 Sep 11.
3
The perceptual consequences and neurophysiology of eye blinks.
Front Syst Neurosci. 2023 Aug 16;17:1242654. doi: 10.3389/fnsys.2023.1242654. eCollection 2023.
4
Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field.
J Neurosci. 2023 Oct 11;43(41):6884-6897. doi: 10.1523/JNEUROSCI.1740-22.2023. Epub 2023 Aug 28.
5
Superior colliculus saccade motor bursts do not dictate movement kinematics.
Commun Biol. 2022 Nov 11;5(1):1222. doi: 10.1038/s42003-022-04203-0.
6
Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network.
Brain Struct Funct. 2021 Dec;226(9):3007-3022. doi: 10.1007/s00429-021-02367-9. Epub 2021 Sep 13.
7
The influence of subcortical shortcuts on disordered sensory and cognitive processing.
Nat Rev Neurosci. 2020 May;21(5):264-276. doi: 10.1038/s41583-020-0287-1. Epub 2020 Apr 8.
8
Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases.
J Neurosci. 2017 Nov 29;37(48):11715-11730. doi: 10.1523/JNEUROSCI.2664-17.2017. Epub 2017 Oct 31.
10
A circuit for saccadic suppression in the primate brain.
J Neurophysiol. 2017 Apr 1;117(4):1720-1735. doi: 10.1152/jn.00679.2016. Epub 2016 Dec 21.

本文引用的文献

1
Goal representations dominate superior colliculus activity during extrafoveal tracking.
J Neurosci. 2008 Sep 17;28(38):9426-39. doi: 10.1523/JNEUROSCI.1313-08.2008.
2
Effect of inactivation of the cortical frontal eye field on saccades generated in a choice response paradigm.
J Neurophysiol. 2008 Nov;100(5):2726-37. doi: 10.1152/jn.90673.2008. Epub 2008 Sep 10.
3
Reversal of a distractor effect on saccade target selection after superior colliculus inactivation.
J Neurophysiol. 2008 May;99(5):2694-702. doi: 10.1152/jn.00591.2007. Epub 2008 Mar 26.
4
Effect of reversible inactivation of superior colliculus on head movements.
J Neurophysiol. 2008 May;99(5):2479-95. doi: 10.1152/jn.01112.2007. Epub 2008 Feb 27.
5
Influence of the thalamus on spatial visual processing in frontal cortex.
Nature. 2006 Nov 16;444(7117):374-7. doi: 10.1038/nature05279. Epub 2006 Nov 8.
6
Deficits in saccade target selection after inactivation of superior colliculus.
Nat Neurosci. 2004 Jul;7(7):757-63. doi: 10.1038/nn1269. Epub 2004 Jun 13.
7
Target selection and the superior colliculus: goals, choices and hypotheses.
Vision Res. 2004 Jun;44(12):1445-51. doi: 10.1016/j.visres.2004.01.005.
8
Cortical inhibitory circuits in eye-movement generation.
Eur J Neurosci. 2003 Dec;18(11):3127-33. doi: 10.1111/j.1460-9568.2003.03036.x.
9
Visuomotor origins of covert spatial attention.
Neuron. 2003 Nov 13;40(4):671-83. doi: 10.1016/s0896-6273(03)00716-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验