Suppr超能文献

分级本体感觉操作后目标抓挠动作的功能恢复

Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.

作者信息

Page Keri L, Matheson Thomas

机构信息

Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.

出版信息

J Neurosci. 2009 Mar 25;29(12):3897-907. doi: 10.1523/JNEUROSCI.0089-09.2009.

Abstract

To demonstrate the role of proprioceptive feedback in aimed limb movements, we induced graded changes in the signals provided by the principal receptor in a leg of a locust. The femoro-tibial chordotonal organ (FCO) of the hindleg monitors extension and flexion movements of the tibia and provides the main source of proprioceptive feedback about tibial kinematics. The FCO apodeme (tendon) was surgically shortened by different amounts to provide a systematic bias to this feedback, and aimed scratching movements were analyzed over the week after surgery. Shortening the apodeme led to increased firing of sensory neurons of the FCO at flexed joint angles and is thus functionally similar to flexing the tibia. Immediately after surgery, limb movements shifted dorsally and posteriorly, driven by overextension of the femoro-tibial joint and changes at other joints of the limb. The extent of tibial overextension reflected the extent of apodeme shortening. Overextension would tend to renormalize the FCO feedback signal and can be explained by known interjoint reflex pathways. Our data demonstrate that proprioceptive feedback provides a graded signal that is used to control these aimed limb movements. Over the course of 7 d after surgery, there was a functional recovery in aiming as the overall patterns of movement returned toward control values driven by reciprocal compensatory changes at two joints. The sensory to motor pathways are monosynaptic and oligosynaptic in this system, thus providing us with a powerful opportunity to investigate further the sensorimotor transformations and plasticity of aimed limb movements.

摘要

为了证明本体感觉反馈在有目标的肢体运动中的作用,我们诱导了蝗虫腿部主要感受器提供的信号发生分级变化。后足的股胫弦音器(FCO)监测胫骨的伸展和屈曲运动,并提供有关胫骨运动学的本体感觉反馈的主要来源。通过手术将FCO腱(肌腱)缩短不同的量,以对这种反馈产生系统性偏差,并在手术后一周内分析有目标的抓挠运动。缩短腱会导致FCO感觉神经元在关节屈曲角度时的放电增加,因此在功能上类似于胫骨屈曲。手术后立即,肢体运动在股胫关节过度伸展和肢体其他关节变化的驱动下,向背侧和后方移动。胫骨过度伸展的程度反映了腱缩短的程度。过度伸展倾向于使FCO反馈信号正常化,并且可以通过已知的关节间反射通路来解释。我们的数据表明,本体感觉反馈提供了一个分级信号,用于控制这些有目标的肢体运动。在手术后的7天内,随着运动的整体模式通过两个关节的相互补偿性变化恢复到对照值,瞄准功能出现了恢复。在这个系统中,感觉与运动通路是单突触和寡突触的,因此为我们提供了一个强大的机会来进一步研究有目标的肢体运动的感觉运动转换和可塑性。

相似文献

1
Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.
J Neurosci. 2009 Mar 25;29(12):3897-907. doi: 10.1523/JNEUROSCI.0089-09.2009.
4
Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.
J Neurophysiol. 2021 May 1;125(5):1800-1813. doi: 10.1152/jn.00090.2021. Epub 2021 Mar 31.
5
Body side-specific changes in sensorimotor processing of movement feedback in a walking insect.
J Neurophysiol. 2019 Nov 1;122(5):2173-2186. doi: 10.1152/jn.00436.2019. Epub 2019 Sep 25.
10
Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg.
J Neurophysiol. 2021 Dec 1;126(6):1875-1890. doi: 10.1152/jn.00399.2021. Epub 2021 Oct 27.

引用本文的文献

1
Central processing of leg proprioception in .
Elife. 2020 Dec 2;9:e60299. doi: 10.7554/eLife.60299.
2
Integrative Biomimetics of Autonomous Hexapedal Locomotion.
Front Neurorobot. 2019 Oct 23;13:88. doi: 10.3389/fnbot.2019.00088. eCollection 2019.
3
Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects.
Front Comput Neurosci. 2018 Dec 18;12:101. doi: 10.3389/fncom.2018.00101. eCollection 2018.
4
Neural Coding of Leg Proprioception in Drosophila.
Neuron. 2018 Nov 7;100(3):636-650.e6. doi: 10.1016/j.neuron.2018.09.009. Epub 2018 Oct 4.
5
A neural command circuit for grooming movement control.
Elife. 2015 Sep 7;4:e08758. doi: 10.7554/eLife.08758.
6
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
J Neurosci. 2014 May 28;34(22):7509-21. doi: 10.1523/JNEUROSCI.2200-13.2014.
7
Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
J Neurophysiol. 2012 May;107(10):2756-68. doi: 10.1152/jn.01072.2011. Epub 2012 Feb 22.

本文引用的文献

1
Motor control of aimed limb movements in an insect.
J Neurophysiol. 2008 Feb;99(2):484-99. doi: 10.1152/jn.00922.2007. Epub 2007 Nov 21.
2
Functional recovery following manipulation of muscles and sense organs in the stick insect leg.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Nov;193(11):1151-68. doi: 10.1007/s00359-007-0268-0. Epub 2007 Sep 18.
3
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
J Neurosci. 2006 May 10;26(19):4995-5007. doi: 10.1523/JNEUROSCI.0161-06.2006.
4
Wing hair sensilla underlying aimed hindleg scratching of the locust.
J Exp Biol. 2004 Jul;207(Pt 15):2691-703. doi: 10.1242/jeb.01096.
5
A posture optimization algorithm for model-based motion capture of movement sequences.
J Neurosci Methods. 2004 May 30;135(1-2):43-54. doi: 10.1016/j.jneumeth.2003.11.013.
6
Load compensation in targeted limb movements of an insect.
J Exp Biol. 2003 Sep;206(Pt 18):3175-86. doi: 10.1242/jeb.00534.
7
Graded limb targeting in an insect is caused by the shift of a single movement pattern.
J Neurophysiol. 2003 Sep;90(3):1754-65. doi: 10.1152/jn.00416.2003. Epub 2003 May 28.
9
Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy.
J Neurosci. 2001 May 15;21(10):3531-41. doi: 10.1523/JNEUROSCI.21-10-03531.2001.
10
Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
J Neurophysiol. 2000 Mar;83(3):1480-501. doi: 10.1152/jn.2000.83.3.1480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验