Dürr Volker, Arena Paolo P, Cruse Holk, Dallmann Chris J, Drimus Alin, Hoinville Thierry, Krause Tammo, Mátéfi-Tempfli Stefan, Paskarbeit Jan, Patanè Luca, Schäffersmann Mattias, Schilling Malte, Schmitz Josef, Strauss Roland, Theunissen Leslie, Vitanza Alessandra, Schneider Axel
Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany.
Front Neurorobot. 2019 Oct 23;13:88. doi: 10.3389/fnbot.2019.00088. eCollection 2019.
Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots-ranging from compliant actuation, distributed proprioception and control of multiple legs, the formation of internal representations to the use of an internal body model-we introduce the walking robot HECTOR as a research platform for integrative biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant actuators, light-weight exoskeleton, distributed and expandable hardware architecture, and an appropriate dynamic simulation framework, HECTOR offers many opportunities to integrate research effort across biomimetics research on actuation, sensory-motor feedback, inter-leg coordination, and cognitive abilities such as motion planning and learning of its own body size.
尽管神经机器人学的许多不同领域,特别是仿生机器人,都取得了重大进展,但一个关键挑战是概念的整合:整理并结合神经科学和工程科学中不同且概念上脱节的研究领域的研究成果。我们认为,开发合适的机器人集成平台对于使这种概念整合在实践中发挥作用尤为重要。在此,我们提供了一个用于自主运动的六足机器人集成平台的示例。在一系列六个重点部分中,我们探讨了昆虫和多足机器人中智能的、具身化运动控制的各个方面,从柔顺驱动、分布式本体感觉和多腿控制、内部表征的形成到内部身体模型的使用。我们将行走机器人HECTOR作为六足运动综合仿生学的研究平台进行介绍。由于其具有18个高度传感化的柔顺致动器、轻质外骨骼、分布式且可扩展的硬件架构以及适当的动态仿真框架,HECTOR为整合跨仿生学研究在驱动、感觉运动反馈、腿间协调以及诸如运动规划和自身身体尺寸学习等认知能力方面的研究工作提供了诸多机会。