Suppr超能文献

被动静息状态和拮抗肌活动史塑造了昆虫肢体的主动伸展。

Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.

机构信息

Department of Biology, University of Leicester, University Road, Leicester, United Kingdom.

出版信息

J Neurophysiol. 2012 May;107(10):2756-68. doi: 10.1152/jn.01072.2011. Epub 2012 Feb 22.

Abstract

Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in understanding motor control. We describe passive properties of the femur-tibia joint of the locust hind leg. The resting angle is determined primarily by passive properties of the relatively large extensor tibiae muscle and is influenced by the history of activation of the fast extensor tibiae motor neuron. The resting angle is therefore better described as a history-dependent resting state. We selectively stimulated different flexor tibiae motor neurons to generate a range of isometric contractions of the flexor tibiae muscle and then stimulated the fast extensor tibiae motor neuron to elicit active tibial extensions. Residual forces in the flexor muscle have only a small effect on subsequent active extensions, but the effect is larger for distal than for proximal flexor motor neurons and varies with the strength of flexor activation. We conclude that passive properties of a lightweight limb make substantial and complex contributions to the resting state of the limb that must be taken into account in the patterning of neuronal control signals driving its active movements. Low variability in the effects of the passive forces may permit the nervous system to accurately predict their contributions to behavior.

摘要

肢体运动可以由肌肉收缩、外力或内在的被动力驱动。对于像昆虫或小型脊椎动物那样的轻质肢体,被动力可能足够大,可以克服重力的影响,甚至在没有主动肌肉收缩的情况下产生肢体运动。因此,了解这些力的来源和作用对于理解运动控制非常重要。我们描述了蝗虫后腿股骨-胫骨关节的被动特性。静止角度主要由相对较大的伸肌胫骨肌肉的被动特性决定,并受到快速伸肌胫骨运动神经元激活历史的影响。因此,静止角度可以更好地描述为一种依赖于历史的静止状态。我们选择性地刺激不同的屈肌胫骨运动神经元,以产生屈肌胫骨肌肉的一系列等长收缩,然后刺激快速伸肌胫骨运动神经元,引起主动胫骨伸展。屈肌中的残余力对随后的主动伸展只有很小的影响,但对于远端屈肌运动神经元的影响比近端大,并且随屈肌激活的强度而变化。我们的结论是,轻质肢体的被动特性对肢体的静止状态做出了实质性和复杂的贡献,在驱动其主动运动的神经元控制信号的模式中必须考虑到这一点。被动力的影响的低可变性可能允许神经系统准确预测它们对行为的贡献。

相似文献

1
Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
J Neurophysiol. 2012 May;107(10):2756-68. doi: 10.1152/jn.01072.2011. Epub 2012 Feb 22.
2
Motor patterns during kicking movements in the locust.
J Comp Physiol A. 1995 Mar;176(3):289-305. doi: 10.1007/BF00219055.
3
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
J Neurosci. 2006 May 10;26(19):4995-5007. doi: 10.1523/JNEUROSCI.0161-06.2006.
4
Motor control of aimed limb movements in an insect.
J Neurophysiol. 2008 Feb;99(2):484-99. doi: 10.1152/jn.00922.2007. Epub 2007 Nov 21.
6
Passive joint forces are tuned to limb use in insects and drive movements without motor activity.
Curr Biol. 2013 Aug 5;23(15):1418-26. doi: 10.1016/j.cub.2013.06.024. Epub 2013 Jul 18.
7
Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone.
Curr Biol. 2019 Jan 7;29(1):1-12.e7. doi: 10.1016/j.cub.2018.11.016. Epub 2018 Dec 20.
8
The kinematics and neural control of high-speed kicking movements in the locust.
J Exp Biol. 2001 Oct;204(Pt 20):3471-81. doi: 10.1242/jeb.204.20.3471.
9
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
J Neurophysiol. 1997 Jun;77(6):3297-310. doi: 10.1152/jn.1997.77.6.3297.

引用本文的文献

1
Passive muscle forces in are large but insufficient to support a fly's weight.
bioRxiv. 2025 Aug 2:2025.04.29.651225. doi: 10.1101/2025.04.29.651225.
2
Evaluation of linear and non-linear activation dynamics models for insect muscle.
PLoS Comput Biol. 2019 Oct 14;15(10):e1007437. doi: 10.1371/journal.pcbi.1007437. eCollection 2019 Oct.
3
Soft-surface grasping: radular opening in .
J Exp Biol. 2019 Aug 19;222(Pt 16):jeb191254. doi: 10.1242/jeb.191254.
4
Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana.
PLoS One. 2015 Nov 11;10(11):e0141226. doi: 10.1371/journal.pone.0141226. eCollection 2015.
5
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
J Neurosci. 2014 May 28;34(22):7509-21. doi: 10.1523/JNEUROSCI.2200-13.2014.
7
Passive joint forces are tuned to limb use in insects and drive movements without motor activity.
Curr Biol. 2013 Aug 5;23(15):1418-26. doi: 10.1016/j.cub.2013.06.024. Epub 2013 Jul 18.

本文引用的文献

2
Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
J Neurophysiol. 2010 Sep;104(3):1681-95. doi: 10.1152/jn.00362.2010. Epub 2010 Jul 28.
3
Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.
J Insect Physiol. 2010 Aug;56(8):902-10. doi: 10.1016/j.jinsphys.2010.04.011. Epub 2010 Apr 29.
6
Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.
J Neurosci. 2009 Mar 25;29(12):3897-907. doi: 10.1523/JNEUROSCI.0089-09.2009.
7
Motor control of aimed limb movements in an insect.
J Neurophysiol. 2008 Feb;99(2):484-99. doi: 10.1152/jn.00922.2007. Epub 2007 Nov 21.
9
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
J Neurosci. 2006 May 10;26(19):4995-5007. doi: 10.1523/JNEUROSCI.0161-06.2006.
10
Neural mechanisms for prediction: do insects have forward models?
Trends Neurosci. 2004 May;27(5):278-82. doi: 10.1016/j.tins.2004.03.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验