Suppr超能文献

通过线粒体功能对鸟类能量代谢进行基因调控。

Genetic modulation of energy metabolism in birds through mitochondrial function.

作者信息

Tieleman B Irene, Versteegh Maaike A, Fries Anthony, Helm Barbara, Dingemanse Niels J, Gibbs H Lisle, Williams Joseph B

机构信息

Centre for Ecological and Evolutionary Studies, University of Groningen, 9750 AA Haren, The Netherlands.

出版信息

Proc Biol Sci. 2009 May 7;276(1662):1685-93. doi: 10.1098/rspb.2008.1946. Epub 2009 Feb 25.

Abstract

Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were heritable in a captive-bred population of stonechats (Saxicola torquata spp.) founded on birds from three wild populations (Europe, Africa and Asia) that differed in BMR. This argues that BMR is at least partially under genetic control by multiple unknown nuclear loci each with a limited effect on the phenotype. We then tested for a genetic effect on BMR based on mitochondrial-nuclear coadaptation using hybrids between ancestral populations with high and low BMR (Europe-Africa and Asia-Europe), with different parental configurations (female(high)-male(low) or female(low)-male(high)) within each combination of populations. Hybrids with different parental configurations have on average identical mixtures of nuclear DNA, but differ in mitochondrial DNA because it is inherited only from the mother. Mass-specific BMR differed between hybrids with different parental configurations, implying that the combination of mitochondrial and nuclear DNA affected metabolic rate. Therefore, our findings implicate mitochondrial function as an important regulator of energy metabolism. In combination with the substantial heritabilities of metabolic rate, and corroborated by genetic differences in the mitochondrial genome, these results set the stage for further investigations of a genetic control mechanism involving both mitochondrial and nuclear genes determining metabolic rate at the whole-organism level.

摘要

尽管它们对生理变异的进化至关重要,但决定动物能量消耗的遗传机制在很大程度上仍未得到研究。我们运用数量遗传学方法,证实了在一个由来自三个野生种群(欧洲、非洲和亚洲)且基础代谢率(BMR)不同的石䳭(Saxicola torquata spp.)建立的圈养繁殖种群中,特定质量和全生物体基础代谢率都是可遗传的。这表明基础代谢率至少部分受多个未知核基因座的遗传控制,每个基因座对表型的影响有限。然后,我们基于线粒体 - 核共适应,利用高基础代谢率和低基础代谢率的祖先种群(欧洲 - 非洲和亚洲 - 欧洲)之间的杂交种,在每个种群组合内测试了基础代谢率的遗传效应,这些杂交种具有不同的亲本组合(高基础代谢率雌性 - 低基础代谢率雄性或低基础代谢率雌性 - 高基础代谢率雄性)。具有不同亲本组合的杂交种平均具有相同的核DNA混合,但线粒体DNA不同,因为它仅从母亲遗传而来。不同亲本组合的杂交种之间特定质量基础代谢率存在差异,这意味着线粒体DNA和核DNA的组合影响了代谢率。因此,我们的研究结果表明线粒体功能是能量代谢的重要调节因子。结合代谢率的显著遗传力,并得到线粒体基因组遗传差异的证实,这些结果为进一步研究涉及线粒体和核基因在全生物体水平决定代谢率的遗传控制机制奠定了基础。

相似文献

1
Genetic modulation of energy metabolism in birds through mitochondrial function.
Proc Biol Sci. 2009 May 7;276(1662):1685-93. doi: 10.1098/rspb.2008.1946. Epub 2009 Feb 25.
2
Evolution of mitochondrial DNA and its relation to basal metabolic rate.
Mitochondrial DNA. 2015 Aug;26(4):566-71. doi: 10.3109/19401736.2013.873895. Epub 2014 Jan 17.
3
Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility.
J Exp Biol. 2012 Oct 1;215(Pt 19):3459-66. doi: 10.1242/jeb.073445. Epub 2012 Jul 5.
4
Repeatability and individual correlates of basal metabolic rate and total evaporative water loss in birds: a case study in European stonechats.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Aug;150(4):452-7. doi: 10.1016/j.cbpa.2008.05.006. Epub 2008 May 17.
6
Asymmetric energetic costs in reciprocal-cross hybrids between carnivorous mice (Onychomys).
J Exp Biol. 2016 Dec 1;219(Pt 23):3803-3809. doi: 10.1242/jeb.148890. Epub 2016 Sep 29.
7
Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch.
J Evol Biol. 2007 Sep;20(5):1815-22. doi: 10.1111/j.1420-9101.2007.01384.x.
8
Seasonal metabolic variation in two populations of an Afrotropical euplectid bird.
Physiol Biochem Zool. 2013 Jan-Feb;86(1):19-26. doi: 10.1086/667989. Epub 2012 Oct 23.
9
Differences in the physiological responses to temperature among stonechats from three populations reared in a common environment.
Comp Biochem Physiol A Mol Integr Physiol. 2007 Feb;146(2):194-9. doi: 10.1016/j.cbpa.2006.10.011. Epub 2006 Oct 13.
10
Phenotypic plasticity in the scaling of avian basal metabolic rate.
Proc Biol Sci. 2006 Apr 22;273(1589):931-7. doi: 10.1098/rspb.2005.3415.

引用本文的文献

2
Seasonal but not sex-biased gene expression of the carotenoid ketolase, , in the sexually dichromatic southern red bishop ().
R Soc Open Sci. 2022 Aug 3;9(8):220434. doi: 10.1098/rsos.220434. eCollection 2022 Aug.
4
Prehatching temperatures drive inter-annual cohort differences in great tit metabolism.
Oecologia. 2022 Mar;198(3):619-627. doi: 10.1007/s00442-022-05126-7. Epub 2022 Feb 17.
5
Relationships among feed efficiency traits across production segments and production cycles in cattle.
Transl Anim Sci. 2021 Jun 23;5(3):txab111. doi: 10.1093/tas/txab111. eCollection 2021 Jul.
6
Anatomical and cytohistological study of the pituitary gland in adult turkey.
Vet Res Forum. 2019 Spring;10(2):159-163. doi: 10.30466/vrf.2019.80365.2068. Epub 2019 Jun 15.
7
Genetic Variation for Ontogenetic Shifts in Metabolism Underlies Physiological Homeostasis in .
Genetics. 2019 Jun;212(2):537-552. doi: 10.1534/genetics.119.302052. Epub 2019 Apr 11.
8
Extreme mito-nuclear discordance in a peninsular lizard: the role of drift, selection, and climate.
Heredity (Edinb). 2019 Sep;123(3):359-370. doi: 10.1038/s41437-019-0204-4. Epub 2019 Mar 4.
9
Divergent patterns of telomere shortening in tropical compared to temperate stonechats.
Ecol Evol. 2018 Dec 26;9(1):511-521. doi: 10.1002/ece3.4769. eCollection 2019 Jan.

本文引用的文献

1
EVOLUTION OF BASAL METABOLIC RATE AND ORGAN MASSES IN LABORATORY MICE.
Evolution. 1995 Dec;49(6):1239-1248. doi: 10.1111/j.1558-5646.1995.tb04450.x.
3
Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola.
Mol Phylogenet Evol. 2008 Sep;48(3):1145-54. doi: 10.1016/j.ympev.2008.05.016. Epub 2008 May 20.
4
Mitochondrial DNA under siege in avian phylogeography.
Mol Ecol. 2008 May;17(9):2107-21. doi: 10.1111/j.1365-294X.2008.03737.x. Epub 2008 Apr 3.
5
Genomic imprinting and the evolution of sex differences in mammalian reproductive strategies.
Adv Genet. 2007;59:217-43. doi: 10.1016/S0065-2660(07)59008-5.
6
Molecular genetic relationships of the extinct dusky seaside sparrow.
Science. 1989 Feb 3;243(4891):646-8. doi: 10.1126/science.243.4891.646.
7
Anatomic and molecular correlates of divergent selection for basal metabolic rate in laboratory mice.
Physiol Biochem Zool. 2007 Sep-Oct;80(5):491-9. doi: 10.1086/520617. Epub 2007 Jul 13.
8
Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch.
J Evol Biol. 2007 Sep;20(5):1815-22. doi: 10.1111/j.1420-9101.2007.01384.x.
9
Does migration of hybrids contribute to post-zygotic isolation in flycatchers?
Proc Biol Sci. 2007 Mar 7;274(1610):707-12. doi: 10.1098/rspb.2006.0058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验