Tieleman B Irene, Versteegh Maaike A, Fries Anthony, Helm Barbara, Dingemanse Niels J, Gibbs H Lisle, Williams Joseph B
Centre for Ecological and Evolutionary Studies, University of Groningen, 9750 AA Haren, The Netherlands.
Proc Biol Sci. 2009 May 7;276(1662):1685-93. doi: 10.1098/rspb.2008.1946. Epub 2009 Feb 25.
Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were heritable in a captive-bred population of stonechats (Saxicola torquata spp.) founded on birds from three wild populations (Europe, Africa and Asia) that differed in BMR. This argues that BMR is at least partially under genetic control by multiple unknown nuclear loci each with a limited effect on the phenotype. We then tested for a genetic effect on BMR based on mitochondrial-nuclear coadaptation using hybrids between ancestral populations with high and low BMR (Europe-Africa and Asia-Europe), with different parental configurations (female(high)-male(low) or female(low)-male(high)) within each combination of populations. Hybrids with different parental configurations have on average identical mixtures of nuclear DNA, but differ in mitochondrial DNA because it is inherited only from the mother. Mass-specific BMR differed between hybrids with different parental configurations, implying that the combination of mitochondrial and nuclear DNA affected metabolic rate. Therefore, our findings implicate mitochondrial function as an important regulator of energy metabolism. In combination with the substantial heritabilities of metabolic rate, and corroborated by genetic differences in the mitochondrial genome, these results set the stage for further investigations of a genetic control mechanism involving both mitochondrial and nuclear genes determining metabolic rate at the whole-organism level.
尽管它们对生理变异的进化至关重要,但决定动物能量消耗的遗传机制在很大程度上仍未得到研究。我们运用数量遗传学方法,证实了在一个由来自三个野生种群(欧洲、非洲和亚洲)且基础代谢率(BMR)不同的石䳭(Saxicola torquata spp.)建立的圈养繁殖种群中,特定质量和全生物体基础代谢率都是可遗传的。这表明基础代谢率至少部分受多个未知核基因座的遗传控制,每个基因座对表型的影响有限。然后,我们基于线粒体 - 核共适应,利用高基础代谢率和低基础代谢率的祖先种群(欧洲 - 非洲和亚洲 - 欧洲)之间的杂交种,在每个种群组合内测试了基础代谢率的遗传效应,这些杂交种具有不同的亲本组合(高基础代谢率雌性 - 低基础代谢率雄性或低基础代谢率雌性 - 高基础代谢率雄性)。具有不同亲本组合的杂交种平均具有相同的核DNA混合,但线粒体DNA不同,因为它仅从母亲遗传而来。不同亲本组合的杂交种之间特定质量基础代谢率存在差异,这意味着线粒体DNA和核DNA的组合影响了代谢率。因此,我们的研究结果表明线粒体功能是能量代谢的重要调节因子。结合代谢率的显著遗传力,并得到线粒体基因组遗传差异的证实,这些结果为进一步研究涉及线粒体和核基因在全生物体水平决定代谢率的遗传控制机制奠定了基础。