Ford R M, Lauffenburger D A
Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104.
Bull Math Biol. 1991;53(5):721-49. doi: 10.1007/BF02461551.
The mathematical model developed by Rivero et al. (1989, Chem. Engng Sci. 44, 2881-2897) is applied to literature data measuring chemotactic bacterial population distributions in response to steep as well as shallow attractant gradients. This model is based on a fundamental picture of the sensing and response mechanisms of individual bacterial cells, and thus related individual cell properties such as swimming speed and tumbling frequency to population parameters such as the random motility coefficient and the chemotactic sensitivity coefficient. Numerical solution of the model equations generates predicted bacterial density and attractant concentration profiles for any given experimental assay. We have previously validated the mathematical model from experimental work involving a step change in the attractant gradient (Ford et al., 1991 Biotechnol. Bioengng, 37, 647-660; Ford and Lauffenburger, 1991, Biotechnol. Bioengng, 37, 661-672). Within the context of this experimental assay, effects of attractant diffusion and consumption, random motility, and chemotactic sensitivity on the shape of the profiles are explored to enhance our understanding of this complex phenomenon. We have applied this model to various other types of gradients with successful interpretation of data reported by Dalquist et al. (1972, Nature New Biol. 236, 120-123) for Salmonella typhimurium validating the mathematical model and supporting the involvement of high and low affinity receptors for serine chemotaxis by these cells.
里韦罗等人(1989年,《化学工程科学》44卷,2881 - 2897页)开发的数学模型被应用于文献数据,这些数据测量了趋化细菌群体对陡峭以及平缓引诱剂梯度的分布响应。该模型基于单个细菌细胞的传感和响应机制的基本图景,从而将诸如游动速度和翻滚频率等单个细胞特性与诸如随机运动系数和趋化敏感性系数等群体参数联系起来。模型方程的数值解为任何给定的实验测定生成预测的细菌密度和引诱剂浓度分布曲线。我们之前通过涉及引诱剂梯度阶跃变化的实验工作验证了该数学模型(福特等人,1991年,《生物技术与生物工程》37卷,647 - 660页;福特和劳芬伯格,1991年,《生物技术与生物工程》37卷,661 - 672页)。在该实验测定的背景下,探讨了引诱剂扩散和消耗、随机运动以及趋化敏感性对分布曲线形状的影响,以增进我们对这一复杂现象的理解。我们已将此模型应用于各种其他类型的梯度,并成功解释了达尔奎斯特等人(1972年,《自然新生物学》236卷,120 - 123页)报道的鼠伤寒沙门氏菌的数据,验证了该数学模型,并支持这些细胞对丝氨酸趋化作用存在高亲和力和低亲和力受体。