FB Physik, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Photosynth Res. 2009 Nov-Dec;102(2-3):499-509. doi: 10.1007/s11120-009-9417-3.
Determination of thermodynamic parameters of water oxidation at the photosystem II (PSII) manganese complex is a major challenge. Photothermal beam deflection (PBD) spectroscopy determines enthalpy changes (ΔH) and apparent volume changes which are coupled with electron transfer in the S-state cycle (Krivanek R, Dau H, Haumann M (2008) Biophys J 94: 1890–1903). Recent PBD results on formation of the Q⁻(A)/Y(•+)(Z) radical pair suggest a value of ΔH similar to the free energy change, ΔG, of -540±40 meV previously determined by the analysis of recombination fluorescence, but presently the uncertainty range of ΔH values determined by PBD is still high (±250 meV). In the oxygen-evolving transition, S₃−−>S₀, the enthalpy change may be close to zero. A prominent non-thermal signal is associated with both Q⁻(A)/Y(•+)(Z) formation (<1 μs) and the S₃−−>S₀ transition (~1 ms). The observed (apparent) volume expansion (ΔV of about +40 ų per PSII unit) in the S₃−−>S₀ transition seems to revert, at least partially, the contractions on lower S-transitions and may also comprise contributions from O₂ and proton release. The observed volume changes show that the S₃−−>S₀ transition is accompanied by significant nuclear movements, which likely are of importance with respect to energetics and mechanism of photosynthetic water oxidation. Detailed PBD studies on all S-transitions will contribute to the progress in PSII research by providing insights not accessible by other spectroscopic methods.
测定光合作用系统 II(PSII)锰复合物上水氧化的热力学参数是一个主要挑战。光热束偏转(PBD)光谱测定与 S 态循环中的电子转移偶联的焓变(ΔH)和表观体积变化(Krivanek R、Dau H、Haumann M(2008)Biophys J 94:1890-1903)。最近关于 Q⁻(A)/Y(•+)(Z)自由基对形成的 PBD 结果表明,ΔH 值与先前通过重组荧光分析确定的自由能变化ΔG 相似,为-540±40 meV,但目前 PBD 确定的 ΔH 值的不确定范围仍然很高(±250 meV)。在产氧转变中,S₃−−>S₀,焓变可能接近零。一个显著的非热信号与 Q⁻(A)/Y(•+)(Z)形成(<1 μs)和 S₃−−>S₀ 转变(~1 ms)都有关联。在 S₃−−>S₀ 转变中观察到的(表观)体积膨胀(每个 PSII 单位约为+40 ų)似乎至少部分地恢复了较低 S-转变的收缩,并且可能还包括 O₂和质子释放的贡献。观察到的体积变化表明,S₃−−>S₀ 转变伴随着显著的核运动,这对于光合作用中水氧化的能量学和机制可能很重要。对所有 S-转变的详细 PBD 研究将通过提供其他光谱方法无法获得的见解,为 PSII 研究的进展做出贡献。