Physics Department, Freie Universität Berlin, 14195 Berlin, Germany.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16035-40. doi: 10.1073/pnas.1206266109. Epub 2012 Sep 17.
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
水的氧化作用由蓝藻、藻类和植物进行,对产氧光合作用至关重要,而产氧光合作用是地球上生命的动力,也是工程学中制造太阳能燃料系统的范例。光合作用中水氧化的每一个完整反应循环都需要从锰-钙复合物和其在光系统 II 中的蛋白质环境的催化位点去除四个电子和四个质子。在时间分辨光热梁偏转实验中,我们监测了与光诱导电子转移(收缩)和电荷补偿质子重排(扩张)引起的电荷产生相关的光系统 II 蛋白的表观体积变化。检测到了两个以前看不见的质子去除步骤,从而填补了光合作用水氧化基本反应循环模型中的两个空白。在经典 S 态循环的 S 2 → S 3 转变中,在电子向氧化剂(Y Z OX)转移之前,通过去质子化显然形成了一个中间体。在向蛋白质-水界面的长距离质子重排的限速步骤(τ,在 20°C 时约为 30µs)中,特征在于高活化能(E(a) = 0.46 ± 0.05 eV)和强 H/D 动力学同位素效应(约 6)。在 S 0 → S 1 转变过程中质子转移步骤的特征相似(τ,约 100µs;E(a) = 0.34 ± 0.08 eV;动力学同位素效应,约 3);然而,从 Mn 络合物中去除质子是在向. 转移电子之后进行的。通过发现光合作用水氧化反应循环中两个进一步的中间状态的瞬时形成,确立了从催化位点严格交替去除电子和质子的时间顺序。