Suppr超能文献

一种自上而下的方法,用于推断和比较八种模式生物中的结构域-结构域相互作用。

A top-down approach to infer and compare domain-domain interactions across eight model organisms.

作者信息

Guda Chittibabu, King Brian R, Pal Lipika R, Guda Purnima

机构信息

GenNYsis Center for Excellence in Cancer Genomics and Department of Epidemiology & Biostatistics, State University of New York at Albany, Rensselaer, NY, USA.

出版信息

PLoS One. 2009;4(3):e5096. doi: 10.1371/journal.pone.0005096. Epub 2009 Mar 31.

Abstract

Knowledge of specific domain-domain interactions (DDIs) is essential to understand the functional significance of protein interaction networks. Despite the availability of an enormous amount of data on protein-protein interactions (PPIs), very little is known about specific DDIs occurring in them. Here, we present a top-down approach to accurately infer functionally relevant DDIs from PPI data. We created a comprehensive, non-redundant dataset of 209,165 experimentally-derived PPIs by combining datasets from five major interaction databases. We introduced an integrated scoring system that uses a novel combination of a set of five orthogonal scoring features covering the probabilistic, evolutionary, evidence-based, spatial and functional properties of interacting domains, which can map the interacting propensity of two domains in many dimensions. This method outperforms similar existing methods both in the accuracy of prediction and in the coverage of domain interaction space. We predicted a set of 52,492 high-confidence DDIs to carry out cross-species comparison of DDI conservation in eight model species including human, mouse, Drosophila, C. elegans, yeast, Plasmodium, E. coli and Arabidopsis. Our results show that only 23% of these DDIs are conserved in at least two species and only 3.8% in at least 4 species, indicating a rather low conservation across species. Pair-wise analysis of DDI conservation revealed a 'sliding conservation' pattern between the evolutionarily neighboring species. Our methodology and the high-confidence DDI predictions generated in this study can help to better understand the functional significance of PPIs at the modular level, thus can significantly impact further experimental investigations in systems biology research.

摘要

了解特定的结构域-结构域相互作用(DDI)对于理解蛋白质相互作用网络的功能意义至关重要。尽管有大量关于蛋白质-蛋白质相互作用(PPI)的数据,但对于其中发生的特定DDI却知之甚少。在此,我们提出一种自上而下的方法,用于从PPI数据中准确推断功能相关的DDI。我们通过合并来自五个主要相互作用数据库的数据集,创建了一个包含209,165个实验衍生PPI的全面、非冗余数据集。我们引入了一个综合评分系统,该系统使用一组五个正交评分特征的新颖组合,涵盖相互作用结构域的概率、进化、基于证据、空间和功能特性,能够在多个维度上映射两个结构域的相互作用倾向。该方法在预测准确性和结构域相互作用空间覆盖范围方面均优于现有的类似方法。我们预测了一组52,492个高可信度的DDI,以对包括人类、小鼠、果蝇、秀丽隐杆线虫、酵母、疟原虫、大肠杆菌和拟南芥在内的八个模式物种中的DDI保守性进行跨物种比较。我们的结果表明,这些DDI中只有23%在至少两个物种中保守,只有3.8%在至少四个物种中保守,这表明跨物种的保守性相当低。DDI保守性的成对分析揭示了进化上相邻物种之间的“滑动保守”模式。我们的方法以及本研究中生成的高可信度DDI预测有助于在模块水平上更好地理解PPI的功能意义,从而能够显著影响系统生物学研究中的进一步实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c61/2659750/40babcda62f6/pone.0005096.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验