Marner Wesley D, Shaikh Afshan S, Muller Susan J, Keasling Jay D
Dept. of Chemical Engineering, University of California, Berkeley, CA 94720, USA.
Biotechnol Prog. 2009 Mar-Apr;25(2):417-23. doi: 10.1002/btpr.136.
Enzymes and other biomolecules are often immobilized in a matrix to improve their stability or to improve their ability to be reused. Performing a polycondensation reaction in the presence of a biomolecule of interest relies on random entrapment events during polymerization and may not ensure efficient, homogeneous, or complete biomolecule encapsulation. To overcome these limitations, we have developed a method of incorporating autosilification activity into proteins without affecting enzymatic functionality. The unmodified R5 silaffin peptide from Cylindrotheca fusiformis is capable of initiating silica polycondensation in vitro at ambient temperatures and pressures in aqueous solution. In this study, translational fusion proteins between R5 and various functional proteins (phosphodiesterase, organophosphate hydrolase, and green fluorescent protein) were produced in Escherichia coli. Each of the fusion proteins initiated silica polycondensation, and enzymatic activity (or fluorescence) was retained in the resulting silica spheres. Under certain circumstances, the enzymatically-active biosilica displayed improved stability relative to free enzyme at elevated temperatures.
酶和其他生物分子通常固定在基质中,以提高其稳定性或提高其重复使用的能力。在感兴趣的生物分子存在下进行缩聚反应依赖于聚合过程中的随机截留事件,并且可能无法确保有效的、均匀的或完全的生物分子包封。为了克服这些限制,我们开发了一种在不影响酶功能的情况下将自硅化活性整合到蛋白质中的方法。来自纺锤硅藻的未修饰的R5硅蛋白肽能够在水溶液中的环境温度和压力下在体外引发二氧化硅缩聚。在这项研究中,R5与各种功能蛋白(磷酸二酯酶、有机磷酸水解酶和绿色荧光蛋白)之间的翻译融合蛋白在大肠杆菌中产生。每种融合蛋白都引发了二氧化硅缩聚,并且酶活性(或荧光)保留在所得的二氧化硅球中。在某些情况下,与游离酶相比,具有酶活性的生物二氧化硅在升高的温度下显示出更高的稳定性。