Suppr超能文献

R5肽在仿生二氧化硅胶囊中构成具有类液体性质的凝聚相。

R5 Peptides Constitute Condensed Phases with Liquid-Like Properties in Biomimetic Silica Capsules.

作者信息

Brandis Dörte, Mollica Giulia, Kurzbach Dennis

机构信息

Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.

University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria.

出版信息

J Phys Chem Lett. 2025 May 1;16(17):4326-4335. doi: 10.1021/acs.jpclett.5c00144. Epub 2025 Apr 23.

Abstract

Biomimetic silica-peptide nanocomposites are promising materials for applications in drug delivery and enzyme encapsulation due to their biocompatibility, tunable morphologies, and unique structural characteristics. However, the structural dynamics of the peptide scaffold remain largely elusive, impeding rational biomimetic materials design. This shortcoming is not the least due to a lack of methods that can access such heterogeneous systems with dynamics on a wide range of time scales. Among the most studied candidates are silica particles templated by the diatom-derived peptide R5, known for its ability to guide silica precipitation under mild, toxicologically friendly conditions, leading to silica capsules filled with a peptide scaffold. Here, we describe the structural dynamics of R5 within its self-assemblies and the silica particles it templates with a combination of advanced magnetic resonance methods, including C-direct detected NMR, site-directive spin-labeling EPR, and sensitivity-enhanced solid-state NMR. We provide evidence that R5 self-assemblies form condensed phases with liquid-like dynamics both before and after silica encapsulation. Our suite of methods allowed us to access R5/silica composites over a comprehensive range of time scales. These results demonstrate that R5 retains a remarkable degree of internal dynamics, with distinct regions of solid-like and liquid-like behavior even within the silica particles. Specifically, the peptide scaffold comprises three dynamic species: (i) solid-like at the peptide-silica interface, (ii) liquid-like mobility within the scaffold core, and (iii) intermediate dynamics at the boundary regions between core and interface species. Our findings rationalize the high mobility of guest molecules, such as drugs or enzyme substrates, within R5-silica nanoparticles, which is crucial for their functionality in controlled release and catalytic applications. This understanding paves the way for improved rational design considerations for advanced nanomaterials and expands our knowledge of biomimetic mineralization mechanisms. At the same time, the methodological approach can be useful for many types of peptide-guided biominerals, bridging fundamental biochemistry with biotechnological innovation.

摘要

仿生二氧化硅 - 肽纳米复合材料因其生物相容性、可调节的形态和独特的结构特征,在药物递送和酶包封应用中是很有前景的材料。然而,肽支架的结构动力学在很大程度上仍然难以捉摸,这阻碍了合理的仿生材料设计。这个缺点至少部分是由于缺乏能够在广泛的时间尺度上研究这种异质系统动力学的方法。在研究最多的候选材料中,有以硅藻衍生肽R5为模板的二氧化硅颗粒,R5以其在温和、毒理学友好条件下引导二氧化硅沉淀的能力而闻名,可形成填充有肽支架的二氧化硅胶囊。在这里,我们结合先进的磁共振方法,包括碳直接检测核磁共振、位点定向自旋标记电子顺磁共振和灵敏度增强的固态核磁共振,描述了R5在其自组装体以及它所模板化的二氧化硅颗粒中的结构动力学。我们提供的证据表明,R5自组装体在二氧化硅包封之前和之后都形成了具有类液体动力学的凝聚相。我们的一套方法使我们能够在全面的时间尺度上研究R5/二氧化硅复合材料。这些结果表明,即使在二氧化硅颗粒内,R5仍保留了显著程度的内部动力学,具有类固体和类液体行为的不同区域。具体而言,肽支架包括三种动力学类型:(i)在肽 - 二氧化硅界面处为类固体,(ii)在支架核心内为类液体流动性,以及(iii)在核心和界面物种之间的边界区域为中间动力学。我们的发现解释了客体分子,如药物或酶底物,在R5 - 二氧化硅纳米颗粒内的高流动性,这对于它们在控释和催化应用中的功能至关重要。这种理解为改进先进纳米材料的合理设计考虑铺平了道路,并扩展了我们对仿生矿化机制的认识。同时,这种方法学途径对于许多类型的肽引导生物矿物可能是有用的,将基础生物化学与生物技术创新联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ce/12051205/a5bee65ffd47/jz5c00144_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验