Suppr超能文献

通过电化学诱导溶胶-凝胶法将葡萄糖氧化酶一步固定在铂电极上的二氧化硅基质中。

One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process.

作者信息

Jia Wen-Zhi, Wang Kang, Zhu Zheng-Jiang, Song Hang-Tian, Xia Xing-Hua

机构信息

Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.

出版信息

Langmuir. 2007 Nov 6;23(23):11896-900. doi: 10.1021/la7020269. Epub 2007 Oct 11.

Abstract

We demonstrate here that the electrochemical generation of hydroxyl ions and hydrogen bubbles can be used to induce the synthesis of enzyme- or protein-encapsulated 3D porous silica structure on the surface of noble metal electrodes. In the present work, the one-step synthesis of a glucose oxidase (GOD)-encapsulated silica matrix on a platinum electrode is presented. In this process, glucose oxidase was mixed with ethanol and TEOS to form a doped precursory sol solution. The electrochemically generated hydrogen bubbles at negative potentials assisted the formation of the porous structure of a GOD-encapsulated silica gel, and then the one-step immobilization of enzyme into the silica matrix was achieved. Scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM) characterizations showed that the GOD-encapsulated silica matrix adhered to the electrode surface effectively and had an interconnected porous structure. Because the pores started at the electrode surface, their sizes increased gradually along the distance away from the electrode and reached maximum at the solution side, and effective mass transport to the electrode surface could be achieved. The entrapped enzyme in the silica matrix retained its activity. The present glucose biosensor had a short response time of 2 s and showed a linear response to glucose from 0 to 10 mM with a correlation coefficient of 0.9932. The detection limit was estimated to be 0.01 mM at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant (K m app) and the maximum current density were determined to be 20.3 mM and 112.4 microA cm-2, respectively. The present method offers a facile way to fabricate biosensors and bioelectronic devices in situ.

摘要

我们在此证明,羟基离子和氢气泡的电化学生成可用于在贵金属电极表面诱导合成包封酶或蛋白质的三维多孔二氧化硅结构。在本工作中,展示了在铂电极上一步合成包封葡萄糖氧化酶(GOD)的二氧化硅基质的过程。在此过程中,将葡萄糖氧化酶与乙醇和正硅酸乙酯混合形成掺杂的前驱体溶胶溶液。在负电位下电化学生成的氢气泡有助于形成包封GOD的硅胶的多孔结构,然后实现酶一步固定到二氧化硅基质中。扫描电子显微镜(SEM)和扫描电化学显微镜(SECM)表征表明,包封GOD的二氧化硅基质有效地附着在电极表面,并且具有相互连接的多孔结构。由于孔从电极表面开始,其尺寸沿远离电极的方向逐渐增大,并在溶液侧达到最大值,并且可以实现向电极表面的有效质量传输。二氧化硅基质中截留的酶保留了其活性。本葡萄糖生物传感器的响应时间短至2 s,对0至10 mM的葡萄糖呈现线性响应,相关系数为0.9932。在信噪比为3时,检测限估计为0.01 mM。表观米氏常数(K m app)和最大电流密度分别确定为20.3 mM和112.4 μA cm-2。本方法提供了一种原位制造生物传感器和生物电子器件的简便方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验