Suppr超能文献

[基因表达编程在心脏病诊断中的应用]

[The application of gene expression programming in the diagnosis of heart disease].

作者信息

Dai Wenbin, Zhang Yuntao, Gao Xingyu

机构信息

Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Feb;26(1):38-41.

Abstract

GEP (Gene expression programming) is a new genetic algorithm, and it has been proved to be excellent in function finding. In this paper, for the purpose of setting up a diagnostic model, GEP is used to deal with the data of heart disease. Eight variables, Sex, Chest pain, Blood pressure, Angina, Peak, Slope, Colored vessels and Thal, are picked out of thirteen variables to form a classified function. This function is used to predict a forecasting set of 100 samples, and the accuracy is 87%. Other algorithms such as SVM (Support vector machine) are applied to the same data and the forecasting results show that GEP is better than other algorithms.

摘要

基因表达式编程(GEP)是一种新的遗传算法,并且已被证明在函数发现方面表现出色。在本文中,为了建立一个诊断模型,GEP被用于处理心脏病数据。从13个变量中挑选出8个变量,即性别、胸痛、血压、心绞痛、峰值、斜率、血管颜色和地中海贫血,以形成一个分类函数。该函数用于预测一组100个样本的预测集,准确率为87%。其他算法,如支持向量机(SVM),也应用于相同的数据,预测结果表明GEP比其他算法更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验