Suppr超能文献

共振还是整合?神经微回路的自持动力学与兴奋性

Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits.

作者信息

Muresan Raul C, Savin Cristina

机构信息

Frankfurt Institute for Advanced Studies, Max von Laue Strasse 1, 60438 Frankfurt am Main, Germany.

出版信息

J Neurophysiol. 2007 Mar;97(3):1911-30. doi: 10.1152/jn.01043.2006. Epub 2006 Nov 29.

Abstract

We investigated spontaneous activity and excitability in large networks of artificial spiking neurons. We compared three different spiking neuron models: integrate-and-fire (IF), regular-spiking (RS), and resonator (RES). First, we show that different models have different frequency-dependent response properties, yielding large differences in excitability. Then, we investigate the responsiveness of these models to a single afferent inhibitory/excitatory spike and calibrate the total synaptic drive such that they would exhibit similar peaks of the postsynaptic potentials (PSP). Based on the synaptic calibration, we build large microcircuits of IF, RS, and RES neurons and show that the resonance property favors homeostasis and self-sustainability of the network activity. On the other hand, integration produces instability while it endows the network with other useful properties, such as responsiveness to external inputs. We also investigate other potential sources of stable self-sustained activity and their relation to the membrane properties of neurons. We conclude that resonance and integration at the neuron level might interact in the brain to promote stability as well as flexibility and responsiveness to external input and that membrane properties, in general, are essential for determining the behavior of large networks of neurons.

摘要

我们研究了人工发放脉冲神经元的大型网络中的自发活动和兴奋性。我们比较了三种不同的发放脉冲神经元模型:积分发放(IF)、规则发放(RS)和谐振器(RES)。首先,我们表明不同模型具有不同的频率依赖性响应特性,在兴奋性方面产生了很大差异。然后,我们研究了这些模型对单个传入抑制性/兴奋性脉冲的响应,并校准总突触驱动,以使它们表现出相似的突触后电位(PSP)峰值。基于突触校准,我们构建了IF、RS和RES神经元的大型微电路,并表明共振特性有利于网络活动的稳态和自我维持性。另一方面,积分会产生不稳定性,同时赋予网络其他有用特性,如对外部输入的响应性。我们还研究了稳定的自持活动的其他潜在来源及其与神经元膜特性的关系。我们得出结论,神经元水平的共振和积分可能在大脑中相互作用,以促进稳定性以及对外部输入的灵活性和响应性,并且一般来说,膜特性对于确定大型神经元网络的行为至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验