Suppr超能文献

基于层次图论聚类的无监督主动学习

Unsupervised active learning based on hierarchical graph-theoretic clustering.

作者信息

Hu Weiming, Hu Wei, Xie Nianhua, Maybank Steve

机构信息

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Oct;39(5):1147-61. doi: 10.1109/TSMCB.2009.2013197. Epub 2009 Mar 24.

Abstract

Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

摘要

大多数现有的主动学习方法都是有监督的。有监督主动学习存在以下问题:在处理特征空间中样本分布与其标签之间的语义鸿沟时效率低下,缺乏选择属于训练样本中尚未出现的新类别的新样本的能力,以及对样本类别语义解释变化的适应性不足。为了解决这些问题,我们提出了一种基于层次图论聚类的无监督主动学习框架。在该框架中,两种有前景的图论聚类算法,即支配集聚类和谱聚类,以层次方式相结合。我们的框架具有一些优点,如易于实现、架构灵活以及对标签变化的适应性。对网络入侵检测、图像分类和视频分类数据集的评估表明,我们的主动学习框架可以在保持自动分类高精度的同时有效减少人工分类的工作量。结果表明,总体而言,我们的框架优于基于支持向量机的有监督主动学习,特别是在更高效地处理训练样本中尚未出现类别的新样本方面。

相似文献

1
Unsupervised active learning based on hierarchical graph-theoretic clustering.基于层次图论聚类的无监督主动学习
IEEE Trans Syst Man Cybern B Cybern. 2009 Oct;39(5):1147-61. doi: 10.1109/TSMCB.2009.2013197. Epub 2009 Mar 24.
2
3
Graph-based semisupervised learning.基于图的半监督学习。
IEEE Trans Pattern Anal Mach Intell. 2008 Jan;30(1):174-9. doi: 10.1109/TPAMI.2007.70765.
4
Initialization independent clustering with actively self-training method.采用主动自训练方法的初始化无关聚类
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):17-27. doi: 10.1109/TSMCB.2011.2161607. Epub 2011 Nov 11.
5
SemiBoost: boosting for semi-supervised learning.半增强算法:用于半监督学习的增强算法
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2000-14. doi: 10.1109/TPAMI.2008.235.
6
Combining multiple clusterings using evidence accumulation.使用证据积累合并多个聚类。
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):835-50. doi: 10.1109/TPAMI.2005.113.
7
Weighted graph cuts without eigenvectors a multilevel approach.无需特征向量的加权图割:一种多级方法。
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57. doi: 10.1109/TPAMI.2007.1115.
8
Online clustering algorithms for radar emitter classification.用于雷达辐射源分类的在线聚类算法
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1185-96. doi: 10.1109/TPAMI.2005.166.
10
Ubiquitously supervised subspace learning.无处不在的监督子空间学习
IEEE Trans Image Process. 2009 Feb;18(2):241-9. doi: 10.1109/TIP.2008.2009415. Epub 2008 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验