Suppr超能文献

用于人脸识别的二维最大间隔特征提取

Two-dimensional maximum margin feature extraction for face recognition.

作者信息

Yang Wen-Hui, Dai Dao-Qing

机构信息

Department of Mathematics, Faculty of Mathematics and Computing, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Aug;39(4):1002-12. doi: 10.1109/TSMCB.2008.2010715. Epub 2009 Mar 24.

Abstract

On face recognition, most previous works on dimensionality reduction and classification would first transform the input image into 1-D vector, which ignores the underlying data structure and often leads to the small sample size problem. More recently, 2-D discriminant analysis has become an interesting technique which can overcome the aforementioned drawbacks. However, 2-D methods extract features based on the rows or the columns of all images, so it is possible that the features using 2-D methods still contain some redundant information. In addition, most existing 2-D methods cannot provide an automatic strategy to choose discriminant vectors. In this paper, we study the combination of 2-D discriminant analysis and 1-D discriminant analysis and propose a two-stage framework: " (2D)(2)MMC + LDA." Because the extracted features based on maximal margin criterion (MMC) is robust, stable, and efficient, in the first stage, a 2-D two-directional feature extraction technique, (2D)(2)MMC , is presented. In the second stage, the linear discriminant analysis (LDA) step is performed in the (2D)(2)MMC subspace. Experiments with Feret, Olivetti and Oracle Research Laboratory, and Carnegie Mellon University Pose, Illumination, and Expression databases are conducted to evaluate our method in terms of classification accuracy and robustness.

摘要

在人脸识别方面,以往大多数关于降维和分类的工作都会首先将输入图像转换为一维向量,这忽略了潜在的数据结构,并且常常导致小样本量问题。最近,二维判别分析已成为一种有趣的技术,它可以克服上述缺点。然而,二维方法基于所有图像的行或列来提取特征,因此使用二维方法提取的特征仍可能包含一些冗余信息。此外,大多数现有的二维方法无法提供选择判别向量的自动策略。在本文中,我们研究了二维判别分析和一维判别分析的结合,并提出了一个两阶段框架:“(2D)(2)MMC + LDA”。由于基于最大间隔准则(MMC)提取的特征具有鲁棒性、稳定性和高效性,在第一阶段,提出了一种二维双向特征提取技术(2D)(2)MMC。在第二阶段,在(2D)(2)MMC子空间中执行线性判别分析(LDA)步骤。我们使用Feret、Olivetti和甲骨文研究实验室以及卡内基梅隆大学的姿态、光照和表情数据库进行了实验,以在分类准确率和鲁棒性方面评估我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验