Drenos Fotios, Talmud Philippa J, Casas Juan P, Smeeth Liam, Palmen Jutta, Humphries Steve E, Hingorani Aroon D
Division of Cardiovascular Genetics, Department of Medicine, Royal Free and University College Medical School, 5 University St, London WC1E 6JF, UK.
Hum Mol Genet. 2009 Jun 15;18(12):2305-16. doi: 10.1093/hmg/ddp159. Epub 2009 Mar 31.
Individuals at risk of coronary heart disease (CHD) show multiple correlations across blood biomarkers. Single nucleotide polymorphisms (SNPs) indexing biomarker differences could help distinguish causal from confounded associations because of their random allocation prior to disease. We examined the association of 948 SNPs in 122 candidate genes with 12 CHD-associated phenotypes in 2775 middle aged men (a genic scan). Of these, 140 SNPs indexed differences in HDL- and LDL-cholesterol, triglycerides, C-reactive protein, fibrinogen, factor VII, apolipoproteins AI and B, lipoprotein-associated phospholipase A2, homocysteine or folate, some with large effect sizes and highly significant P-values (e.g. 2.15 standard deviations at P = 9.2 x 10(-140) for F7 rs6046 and FVII levels). Top ranking SNPs were then tested for association with additional biomarkers correlated with the index phenotype (phenome scan). Several SNPs (e.g. in APOE, CETP, LPL, APOB and LDLR) influenced multiple phenotypes, while others (e.g. in F7, CRP and FBB) showed restricted association to the index marker. SNPs influencing six blood proteins were used to evaluate the nature of the associations between correlated blood proteins utilizing Mendelian randomization. Multiple SNPs were associated with CHD-related quantitative traits, with some associations restricted to a single marker and others exerting a wider genetic 'footprint'. SNPs indexing biomarkers provide new tools for investigating biological relationships and causal links with disease. Broader and deeper integrated analyses, linking genomic with transcriptomic, proteomic and metabolomic analysis, as well as clinical events could, in principle, better delineate CHD causing pathways amenable to treatment.
冠心病(CHD)风险个体的血液生物标志物之间存在多种相关性。由于单核苷酸多态性(SNP)在疾病发生前是随机分配的,因此可用于指示生物标志物差异,有助于区分因果关联和混杂关联。我们在2775名中年男性中研究了122个候选基因中的948个SNP与12种CHD相关表型的关联(基因扫描)。其中,140个SNP指示了高密度脂蛋白和低密度脂蛋白胆固醇、甘油三酯、C反应蛋白、纤维蛋白原、凝血因子VII、载脂蛋白AI和B、脂蛋白相关磷脂酶A2、同型半胱氨酸或叶酸的差异,有些SNP的效应大小较大且P值高度显著(例如,F7 rs6046与凝血因子VII水平的关联在P = 9.2 x 10(-140)时为2.15个标准差)。然后对排名靠前的SNP进行与索引表型相关的其他生物标志物的关联测试(表型组扫描)。几个SNP(例如在APOE、CETP、LPL、APOB和LDLR基因中)影响多种表型,而其他SNP(例如在F7、CRP和FBB基因中)则仅与索引标志物有受限关联。利用孟德尔随机化,使用影响六种血液蛋白的SNP来评估相关血液蛋白之间关联的性质。多个SNP与CHD相关的数量性状有关,有些关联仅限于单个标志物,而其他关联则具有更广泛的遗传“足迹”。指示生物标志物的SNP为研究生物学关系和与疾病的因果联系提供了新工具。原则上,将基因组学与转录组学、蛋白质组学和代谢组学分析以及临床事件进行更广泛、更深入的综合分析,可以更好地描绘出适合治疗的CHD致病途径。