Leary Scot C, Sasarman Florin, Nishimura Tamiko, Shoubridge Eric A
Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
Hum Mol Genet. 2009 Jun 15;18(12):2230-40. doi: 10.1093/hmg/ddp158. Epub 2009 Mar 31.
Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not in SCO1, cells. Despite this biosynthetic defect, newly synthesized CO II is more stable in SCO2 cells than in control cells. RNAi-mediated knockdown of mutant SCO2 abolishes CO II labeling in the translation assay, whereas knockdown of mutant SCO1 does not affect CO II synthesis. These results indicate that SCO2 acts upstream of SCO1, and that it is indispensable for CO II synthesis. The subsequent maturation of CO II is contingent upon the formation of a complex that includes both SCO proteins, each with a functional CxxxC copper-coordinating motif. In control cells, the cysteines in this motif in SCO1 exist as a mixed population comprised of oxidized disulphides and reduced thiols; however, the relative ratio of oxidized to reduced cysteines in SCO1 is perturbed in cells from both SCO backgrounds. Overexpression of wild-type SCO2, or knockdown of mutant SCO2, in SCO2 cells alters the ratio of oxidized to reduced cysteines in SCO1, suggesting that SCO2 acts as a thiol-disulphide oxidoreductase to oxidize the copper-coordinating cysteines in SCO1 during CO II maturation. Based on these data we present a model in which each SCO protein fulfills distinct, stage-specific functions during CO II synthesis and CuA site maturation.
人类的SCO1和SCO2编码必需的金属伴侣蛋白,它们在细胞色素c氧化酶亚基II(CO II)的CuA位点生物合成中发挥的功能尚不明确。在此,我们利用患者细胞系来研究每种SCO蛋白在该途径中的具体作用。通过脉冲标记线粒体翻译产物,我们证明在SCO2细胞中CO II的合成减少,但在SCO1细胞中未减少。尽管存在这种生物合成缺陷,但新合成的CO II在SCO2细胞中比在对照细胞中更稳定。RNA干扰介导的突变型SCO2敲低在翻译试验中消除了CO II标记,而突变型SCO1的敲低不影响CO II的合成。这些结果表明SCO2在SCO1的上游起作用,并且它对于CO II的合成是不可或缺的。CO II随后的成熟取决于形成一种复合物,该复合物包括两种SCO蛋白,每种蛋白都具有功能性的CxxxC铜配位基序。在对照细胞中,SCO1中该基序的半胱氨酸以由氧化二硫键和还原硫醇组成的混合群体形式存在;然而,在来自两种SCO背景的细胞中,SCO1中氧化型与还原型半胱氨酸的相对比例受到干扰。在SCO2细胞中过表达野生型SCO2或敲低突变型SCO2会改变SCO1中氧化型与还原型半胱氨酸的比例,这表明SCO2在CO II成熟过程中作为硫醇 - 二硫键氧化还原酶来氧化SCO1中的铜配位半胱氨酸。基于这些数据,我们提出了一个模型,其中每种SCO蛋白在CO II合成和CuA位点成熟过程中履行不同的、阶段特异性的功能。