Leary Scot C, Kaufman Brett A, Pellecchia Giovanna, Guercin Guy-Hellen, Mattman Andre, Jaksch Michaela, Shoubridge Eric A
Montreal Neurological Institute, Department of Human Genetics, McGill University, Canada.
Hum Mol Genet. 2004 Sep 1;13(17):1839-48. doi: 10.1093/hmg/ddh197. Epub 2004 Jun 30.
Human SCO1 and SCO2 are paralogous genes that code for metallochaperone proteins with essential, but poorly understood, roles in copper delivery to cytochrome c oxidase (COX). Mutations in these genes produce tissue-specific COX deficiencies associated with distinct clinical phenotypes, although both are ubiquitously expressed. To investigate the molecular function of the SCO proteins, we characterized the mitochondrial copper delivery pathway in SCO1 and SCO2 patient backgrounds. Immunoblot analysis of patient cell lines showed reduced levels of the mutant proteins, resulting in a defect in COX assembly, and the appearance of a common assembly intermediate. Overexpression of the metallochaperone COX17 rescued the COX deficiency in SCO2 patient cells but not in SCO1 patient cells. Overexpression of either wild-type SCO protein in the reciprocal patient background resulted in a dominant-negative phenotype, suggesting a physical interaction between SCO1 and SCO2. Chimeric proteins, constructed from the C-terminal copper-binding and N-terminal matrix domains of the two SCO proteins failed to complement the COX deficiency in either patient background, but mapped the dominant-negative phenotype in the SCO2 background to the N-terminal domain of SCO1, the most divergent part of the two SCO proteins. Our results demonstrate that the human SCO proteins have non-overlapping, cooperative functions in mitochondrial copper delivery. Size exclusion chromatography suggests that both the proteins function as homodimers. We propose a model in which COX17 delivers copper to SCO2, which in turn transfers it directly to the CuA site at an early stage of COX assembly in a reaction that is facilitated by SCO1.
人类SCO1和SCO2是旁系同源基因,编码金属伴侣蛋白,这些蛋白在将铜传递给细胞色素c氧化酶(COX)的过程中发挥着重要但尚未完全了解的作用。尽管这两个基因在全身广泛表达,但它们的突变会导致与不同临床表型相关的组织特异性COX缺陷。为了研究SCO蛋白的分子功能,我们对SCO1和SCO2患者背景下的线粒体铜传递途径进行了表征。对患者细胞系的免疫印迹分析显示突变蛋白水平降低,导致COX组装缺陷,并出现一种常见的组装中间体。金属伴侣COX17的过表达挽救了SCO2患者细胞中的COX缺陷,但不能挽救SCO1患者细胞中的COX缺陷。在相互的患者背景中过表达任何一种野生型SCO蛋白都会导致显性负性表型,这表明SCO1和SCO2之间存在物理相互作用。由两种SCO蛋白的C末端铜结合结构域和N末端基质结构域构建的嵌合蛋白在任何一种患者背景中均不能弥补COX缺陷,但将SCO2背景中的显性负性表型定位到SCO1的N末端结构域,这是两种SCO蛋白中差异最大的部分。我们的结果表明,人类SCO蛋白在线粒体铜传递中具有非重叠的协同功能。尺寸排阻色谱表明这两种蛋白均以同型二聚体形式发挥作用。我们提出了一个模型,其中COX17将铜传递给SCO2,而SCO2又在SCO1促进的反应中,在COX组装的早期将其直接转移到CuA位点。