Suppr超能文献

在基因结构关联测试中,采用多重填补法校正混合估计中的测量误差。

Multiple imputation to correct for measurement error in admixture estimates in genetic structured association testing.

作者信息

Padilla Miguel A, Divers Jasmin, Vaughan Laura K, Allison David B, Tiwari Hemant K

机构信息

Department of Psychology, Old Dominion University, Norfolk, VA 23505, USA.

出版信息

Hum Hered. 2009;68(1):65-72. doi: 10.1159/000210450. Epub 2009 Apr 1.

Abstract

OBJECTIVES

Structured association tests (SAT), like any statistical model, assumes that all variables are measured without error. Measurement error can bias parameter estimates and confound residual variance in linear models. It has been shown that admixture estimates can be contaminated with measurement error causing SAT models to suffer from the same afflictions. Multiple imputation (MI) is presented as a viable tool for correcting measurement error problems in SAT linear models with emphasis on correcting measurement error contaminated admixture estimates.

METHODS

Several MI methods are presented and compared, via simulation, in terms of controlling Type I error rates for both non-additive and additive genotype coding.

RESULTS

Results indicate that MI using the Rubin or Cole method can be used to correct for measurement error in admixture estimates in SAT linear models.

CONCLUSION

Although MI can be used to correct for admixture measurement error in SAT linear models, the data should be of reasonable quality, in terms of marker informativeness, because the method uses the existing data to borrow information in which to make the measurement error corrections. If the data are of poor quality there is little information to borrow to make measurement error corrections.

摘要

目的

与任何统计模型一样,结构化关联检验(SAT)假定所有变量的测量均无误差。测量误差会使参数估计产生偏差,并混淆线性模型中的残差方差。研究表明,混合估计可能会受到测量误差的影响,导致SAT模型出现同样的问题。多重填补(MI)被视为一种可行的工具,用于纠正SAT线性模型中的测量误差问题,重点是纠正受测量误差影响的混合估计。

方法

通过模拟,展示并比较了几种MI方法在控制非加性和加性基因型编码的I型错误率方面的情况。

结果

结果表明,使用鲁宾或科尔方法的MI可用于纠正SAT线性模型中混合估计的测量误差。

结论

虽然MI可用于纠正SAT线性模型中的混合测量误差,但就标记信息性而言,数据应具有合理质量,因为该方法利用现有数据借用信息来进行测量误差校正。如果数据质量较差,则几乎没有可供借用的信息来进行测量误差校正。

相似文献

2
Correcting for measurement error in individual ancestry estimates in structured association tests.
Genetics. 2007 Jul;176(3):1823-33. doi: 10.1534/genetics.107.075408. Epub 2007 May 16.
3
Regional admixture mapping and structured association testing: conceptual unification and an extensible general linear model.
PLoS Genet. 2006 Aug 25;2(8):e137. doi: 10.1371/journal.pgen.0020137. Epub 2006 Jul 18.
4
A true score imputation method to account for psychometric measurement error.
Psychol Methods. 2025 Jun;30(3):636-659. doi: 10.1037/met0000578. Epub 2023 May 25.
5
6
An imputation-based solution to using mismeasured covariates in propensity score analysis.
Stat Methods Med Res. 2017 Aug;26(4):1824-1837. doi: 10.1177/0962280215588771. Epub 2015 Jun 2.
7
Analytical correction for multiple testing in admixture mapping.
Hum Hered. 2006;62(2):55-63. doi: 10.1159/000096094. Epub 2006 Oct 12.
8
The effects of measurement errors on relative risk regressions.
Am J Epidemiol. 1990 Dec;132(6):1176-84. doi: 10.1093/oxfordjournals.aje.a115761.
9
Maximum-likelihood estimation of admixture proportions from genetic data.
Genetics. 2003 Jun;164(2):747-65. doi: 10.1093/genetics/164.2.747.
10
The genetic structure of admixed populations.
Genetics. 1991 Feb;127(2):417-28. doi: 10.1093/genetics/127.2.417.

本文引用的文献

1
Correcting for measurement error in individual ancestry estimates in structured association tests.
Genetics. 2007 Jul;176(3):1823-33. doi: 10.1534/genetics.107.075408. Epub 2007 May 16.
2
Regional admixture mapping and structured association testing: conceptual unification and an extensible general linear model.
PLoS Genet. 2006 Aug 25;2(8):e137. doi: 10.1371/journal.pgen.0020137. Epub 2006 Jul 18.
4
Estimation of individual admixture: analytical and study design considerations.
Genet Epidemiol. 2005 May;28(4):289-301. doi: 10.1002/gepi.20064.
5
Measuring and using admixture to study the genetics of complex diseases.
Hum Genomics. 2003 Nov;1(1):52-62. doi: 10.1186/1479-7364-1-1-52.
6
Genomic Control to the extreme.
Nat Genet. 2004 Nov;36(11):1129-30; author reply 1131. doi: 10.1038/ng1104-1129.
7
The effects of human population structure on large genetic association studies.
Nat Genet. 2004 May;36(5):512-7. doi: 10.1038/ng1337. Epub 2004 Mar 28.
8
Assessing the impact of population stratification on genetic association studies.
Nat Genet. 2004 Apr;36(4):388-93. doi: 10.1038/ng1333. Epub 2004 Mar 28.
9
Qualitative semi-parametric test for genetic associations in case-control designs under structured populations.
Ann Hum Genet. 2003 May;67(Pt 3):250-64. doi: 10.1046/j.1469-1809.2003.00036.x.
10
Human population structure and genetic association studies.
Pharmacogenomics. 2003 Jul;4(4):431-41. doi: 10.1517/phgs.4.4.431.22758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验