Suppr超能文献

抑郁症治疗一年期间脱落的预测因素:个性化干预路线图。

Predictors of attrition during one year of depression treatment: a roadmap to personalized intervention.

作者信息

Warden Diane, Rush A John, Carmody Thomas J, Kashner T Michael, Biggs Melanie M, Crismon M Lynn, Trivedi Madhukar H

机构信息

Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9119, USA.

出版信息

J Psychiatr Pract. 2009 Mar;15(2):113-24. doi: 10.1097/01.pra.0000348364.88676.83.

Abstract

OBJECTIVE

Attrition from treatment in the short and long term for major depressive disorder (MDD) is clearly an adverse outcome. To assist in tailoring the delivery of interventions to specific patients to reduce attrition, this study reports the incidence, timing, and predictors of attrition from outpatient treatment in public mental health clinics.

METHODS

Outpatients with psychotic and nonpsychotic MDD receiving measurement-based care in the Texas Medication Algorithm Project (N=179) were evaluated to determine timing and rates of attrition as well as baseline sociodemographic, clinical, and attitudinal predictors of attrition.

RESULTS

Overall, 23% (42/179) of the patients left treatment by 6 months, and 47% (84/179) left by 12 months. Specific beliefs about the impact of medication, such as its perceived harmfulness, predicted attrition at both 6 and 12 months. Younger age (P=0.0004) and fewer side effects at baseline (P=0.0376) were associated with attrition at 6 months. Younger age (P=0.0013), better perceived physical functioning (P=0.0007), and more negative attitudes about psychiatric medications at baseline (P=0.0075) were associated with attrition at 12 months.

CONCLUSIONS

Efforts to elicit attitudes about medications and tailoring educational and other retention interventions for patients with negative beliefs about antidepressants both when initiating a new medication and throughout treatment may reduce attrition. Particular focus on younger patients and those requiring frequent visits may be helpful.

摘要

目的

重度抑郁症(MDD)患者在短期和长期治疗中的脱落显然是一种不良后果。为了帮助针对特定患者调整干预措施的实施以减少脱落,本研究报告了公共精神卫生诊所门诊治疗中脱落的发生率、时间以及预测因素。

方法

对在德克萨斯药物算法项目中接受基于测量的护理的患有精神病性和非精神病性MDD的门诊患者(N = 179)进行评估,以确定脱落的时间和发生率以及脱落的基线社会人口统计学、临床和态度预测因素。

结果

总体而言,23%(42/179)的患者在6个月时停止治疗,47%(84/179)的患者在12个月时停止治疗。对药物影响的特定信念,如认为其有害性,在6个月和12个月时均预测了脱落。年龄较小(P = 0.0004)和基线时副作用较少(P = 0.0376)与6个月时的脱落有关。年龄较小(P = 0.0013)、自我感觉身体功能较好(P = 0.0007)以及基线时对精神科药物的负面态度较多(P = 0.0075)与12个月时的脱落有关。

结论

在开始新药治疗时以及整个治疗过程中,努力了解患者对药物的态度,并为对抗抑郁药有负面信念的患者量身定制教育和其他留住患者的干预措施,可能会减少脱落。特别关注年轻患者和那些需要频繁就诊的患者可能会有所帮助。

相似文献

引用本文的文献

本文引用的文献

1
The compliance with antidepressants in general practice.一般实践中抗抑郁药的依从性。
J Psychopharmacol. 1994 Jan;8(1):48-52. doi: 10.1177/026988119400800108.
3
Perspectives from the clinic: will the average physician embrace personalized medicine?
Clin Pharmacol Ther. 2008 Mar;83(3):492-3. doi: 10.1038/sj.clpt.6100486. Epub 2008 Feb 6.
8
Nontricyclic antidepressants: predictors of nonadherence.非三环类抗抑郁药:不依从性的预测因素。
J Clin Psychopharmacol. 2006 Dec;26(6):643-7. doi: 10.1097/01.jcp.0000246217.34024.53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验