Suppr超能文献

难治性抑郁症的基于测量的护理:一种用于临床研究和实践的临床决策支持模型。

Measurement-based care for refractory depression: a clinical decision support model for clinical research and practice.

作者信息

Trivedi Madhukar H, Daly Ella J

机构信息

Mood Disorders Program, Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.

出版信息

Drug Alcohol Depend. 2007 May;88 Suppl 2(Suppl 2):S61-71. doi: 10.1016/j.drugalcdep.2007.01.007. Epub 2007 Feb 22.

Abstract

Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the "next best" treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses.

摘要

尽管多年来一直在进行抗抑郁药物研发,并对患者和医疗服务提供者开展教育,但在抑郁症治疗中,药物剂量未达最佳标准以及暴露时间不足导致症状未完全缓解的情况仍然很常见。此外,由于没有一种治疗方法对所有患者都有效,因此,注重症状、副作用和功能测量的最佳治疗实施对于确定有效的序贯治疗方法至关重要。在如何将临床决策纳入临床实践方面,需要进行范式转变,摒弃目前用于确定“次优”治疗方法的试错法。本文描述了我们在德克萨斯药物算法项目(TMAP)和缓解抑郁症的序贯治疗替代方案(STAR*D)试验中的经验,证实了需要易于使用的临床支持系统以确保遵循指南。为进一步提高指南遵循度,我们开发了一种电子决策支持系统,该系统在患者护理点提供关键反馈和指导。我们认为,基于测量的护理(MBC)方法对于任何决策支持系统都至关重要,它能让医生根据症状进展、药物耐受性和剂量优化来个性化并调整有关患者护理的决策。我们还认为,将序贯算法与MBC成功整合到现实世界的诊所中将促进持久的变革并改善患者预后。尽管我们以重度抑郁症为例来说明我们的方法,但所涉及的问题适用于其他慢性精神疾病,包括共病抑郁症和物质使用障碍以及其他医学疾病。

相似文献

1
Measurement-based care for refractory depression: a clinical decision support model for clinical research and practice.
Drug Alcohol Depend. 2007 May;88 Suppl 2(Suppl 2):S61-71. doi: 10.1016/j.drugalcdep.2007.01.007. Epub 2007 Feb 22.
2
Maximizing the adequacy of medication treatment in controlled trials and clinical practice: STAR(*)D measurement-based care.
Neuropsychopharmacology. 2007 Dec;32(12):2479-89. doi: 10.1038/sj.npp.1301390. Epub 2007 Apr 4.
4
Assessing physicians' use of treatment algorithms: Project IMPACTS study design and rationale.
Contemp Clin Trials. 2007 Feb;28(2):192-212. doi: 10.1016/j.cct.2006.08.005. Epub 2006 Aug 16.
8
A computerized clinical decision support system as a means of implementing depression guidelines.
Psychiatr Serv. 2004 Aug;55(8):879-85. doi: 10.1176/appi.ps.55.8.879.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

3
Dynamic learning of individual-level suicidal ideation trajectories to enhance mental health care.
Npj Ment Health Res. 2024 Jun 7;3(1):26. doi: 10.1038/s44184-024-00071-0.
4
5
Towards shortening the Brief Addiction Monitor-Revised (BAM-R).
Drug Alcohol Depend Rep. 2023 Aug 6;8:100183. doi: 10.1016/j.dadr.2023.100183. eCollection 2023 Sep.
6
Systematic review of structured care pathways in major depressive disorder and bipolar disorder.
BMC Psychiatry. 2023 Feb 2;23(1):85. doi: 10.1186/s12888-022-04379-z.

本文引用的文献

1
Maximizing the adequacy of medication treatment in controlled trials and clinical practice: STAR(*)D measurement-based care.
Neuropsychopharmacology. 2007 Dec;32(12):2479-89. doi: 10.1038/sj.npp.1301390. Epub 2007 Apr 4.
2
Assessing physicians' use of treatment algorithms: Project IMPACTS study design and rationale.
Contemp Clin Trials. 2007 Feb;28(2):192-212. doi: 10.1016/j.cct.2006.08.005. Epub 2006 Aug 16.
3
Report by the ACNP Task Force on response and remission in major depressive disorder.
Neuropsychopharmacology. 2006 Sep;31(9):1841-53. doi: 10.1038/sj.npp.1301131. Epub 2006 Jun 21.
4
Self-rated global measure of the frequency, intensity, and burden of side effects.
J Psychiatr Pract. 2006 Mar;12(2):71-9. doi: 10.1097/00131746-200603000-00002.
6
Medication augmentation after the failure of SSRIs for depression.
N Engl J Med. 2006 Mar 23;354(12):1243-52. doi: 10.1056/NEJMoa052964.
7
Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression.
N Engl J Med. 2006 Mar 23;354(12):1231-42. doi: 10.1056/NEJMoa052963.
10
Computerizing medication algorithms and decision support systems for major psychiatric disorders.
J Psychiatr Pract. 2000 Sep;6(5):237-46. doi: 10.1097/00131746-200009000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验