Krasowski Matthew D, Siam Mohamed G, Iyer Manisha, Pizon Anthony F, Giannoutsos Spiros, Ekins Sean
Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Clin Chem. 2009 Jun;55(6):1203-13. doi: 10.1373/clinchem.2008.118638. Epub 2009 Apr 2.
Immunoassays used for routine drug of abuse (DOA) and toxicology screening may be limited by cross-reacting compounds able to bind to the antibodies in a manner similar to the target molecule(s). To date, there has been little systematic investigation using computational tools to predict cross-reactive compounds.
Commonly used molecular similarity methods enabled calculation of structural similarity for a wide range of compounds (prescription and over-the-counter medications, illicit drugs, and clinically significant metabolites) to the target molecules of DOA/toxicology screening assays. We used various molecular descriptors (MDL public keys, functional class fingerprints, and pharmacophore fingerprints) and the Tanimoto similarity coefficient. These data were then compared with cross-reactivity data in the package inserts of immunoassays marketed for in vitro diagnostic use. Previously untested compounds that were predicted to have a high probability of cross-reactivity were tested.
Molecular similarity calculated using MDL public keys and the Tanimoto similarity coefficient showed a strong and statistically significant separation between cross-reactive and non-cross-reactive compounds. This result was validated experimentally by discovery of additional cross-reactive compounds based on computational predictions.
The computational methods employed are amenable toward rapid screening of databases of drugs, metabolites, and endogenous molecules and may be useful for identifying cross-reactive molecules that would be otherwise unsuspected. These methods may also have value in focusing cross-reactivity testing on compounds with high similarity to the target molecule(s) and limiting testing of compounds with low similarity and very low probability of cross-reacting with the assay.
用于常规药物滥用(DOA)和毒理学筛查的免疫分析可能会受到交叉反应化合物的限制,这些化合物能够以类似于目标分子的方式与抗体结合。迄今为止,很少有使用计算工具来预测交叉反应化合物的系统研究。
常用的分子相似性方法能够计算多种化合物(处方药和非处方药、非法药物以及具有临床意义的代谢物)与DOA/毒理学筛查分析目标分子的结构相似性。我们使用了各种分子描述符(MDL公钥、功能类指纹和药效团指纹)以及Tanimoto相似系数。然后将这些数据与用于体外诊断的市售免疫分析试剂盒说明书中的交叉反应性数据进行比较。对预测具有高交叉反应可能性的先前未经测试的化合物进行了测试。
使用MDL公钥和Tanimoto相似系数计算的分子相似性显示,交叉反应性化合物和非交叉反应性化合物之间存在强烈且具有统计学意义的区分。通过基于计算预测发现额外的交叉反应性化合物,这一结果在实验上得到了验证。
所采用的计算方法适用于快速筛选药物、代谢物和内源性分子的数据库,可能有助于识别那些原本未被怀疑的交叉反应性分子。这些方法在将交叉反应性测试集中于与目标分子高度相似的化合物,并限制对与分析方法交叉反应可能性低且相似度低的化合物进行测试方面也可能具有价值。