Suppr超能文献

定量蛋白质组学揭示了非常规泛素链在蛋白酶体降解中的功能。

Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation.

作者信息

Xu Ping, Duong Duc M, Seyfried Nicholas T, Cheng Dongmei, Xie Yang, Robert Jessica, Rush John, Hochstrasser Mark, Finley Daniel, Peng Junmin

机构信息

Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA.

出版信息

Cell. 2009 Apr 3;137(1):133-45. doi: 10.1016/j.cell.2009.01.041.

Abstract

All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unconventional linkages are abundant in vivo and that all non-K63 linkages may target proteins for degradation. Ubiquitin with K48 as the single lysine cannot support yeast viability, and different linkages have partially redundant functions. By profiling both the entire yeast proteome and ubiquitinated proteins in wild-type and ubiquitin K11R mutant strains using mass spectrometry, we identified K11 linkage-specific substrates, including Ubc6, a ubiquitin-conjugating enzyme involved in endoplasmic reticulum-associated degradation (ERAD). Ubc6 primarily synthesizes K11-linked chains, and K11 linkages function in the ERAD pathway. Thus, unconventional polyubiquitin chains are critical for ubiquitin-proteasome system function.

摘要

泛素中的所有七个赖氨酸残基都有助于在蛋白质底物上合成多聚泛素链。虽然K48连接的链作为蛋白酶体降解的介质已得到充分证实,而K63连接的链在非蛋白水解事件中起作用,但通过K6、K11、K27、K29或K33连接的非常规多聚泛素链的作用尚未得到充分了解。在这里,我们报告非常规连接在体内很丰富,并且所有非K63连接都可能将蛋白质靶向降解。以K48作为唯一赖氨酸的泛素不能支持酵母的生存能力,并且不同的连接具有部分冗余功能。通过使用质谱分析野生型和泛素K11R突变株中的整个酵母蛋白质组和泛素化蛋白质,我们鉴定了K11连接特异性底物,包括Ubc6,一种参与内质网相关降解(ERAD)的泛素结合酶。Ubc6主要合成K11连接的链,并且K11连接在内质网相关降解途径中起作用。因此,非常规多聚泛素链对于泛素-蛋白酶体系统功能至关重要。

相似文献

2
Atypical ubiquitylation in yeast targets lysine-less Asi2 for proteasomal degradation.
J Biol Chem. 2015 Jan 23;290(4):2489-95. doi: 10.1074/jbc.M114.600593. Epub 2014 Dec 9.
4
Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages.
Mol Biol Cell. 2015 Dec 1;26(24):4325-32. doi: 10.1091/mbc.E15-02-0102. Epub 2015 Oct 7.
5
Diversity of polyubiquitin chains.
Dev Cell. 2009 Apr;16(4):485-6. doi: 10.1016/j.devcel.2009.04.001.
7
Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.
J Mol Biol. 2010 Jan 29;395(4):803-14. doi: 10.1016/j.jmb.2009.10.039. Epub 2009 Oct 22.
8
The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains.
EMBO J. 2021 Mar 15;40(6):e106094. doi: 10.15252/embj.2020106094. Epub 2021 Feb 12.
9
The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation.
Mol Cell Proteomics. 2020 Nov;19(11):1896-1909. doi: 10.1074/mcp.RA120.002050. Epub 2020 Aug 31.
10
K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1401-E1408. doi: 10.1073/pnas.1716673115. Epub 2018 Jan 29.

引用本文的文献

1
Proteome solubility is differentially reshaped by thermal stress and regulators of ubiquitination.
J Biol Chem. 2025 Jul 24;301(9):110517. doi: 10.1016/j.jbc.2025.110517.
3
Allosteric activation of the SPRTN protease by ubiquitin maintains genome stability.
Nat Commun. 2025 Jul 21;16(1):5422. doi: 10.1038/s41467-025-61224-z.
4
Cypin regulates K63-linked polyubiquitination to shape synaptic content.
Sci Adv. 2025 Jul 11;11(28):eads5467. doi: 10.1126/sciadv.ads5467.
7
Aging and diet alter the protein ubiquitylation landscape in the mouse brain.
Nat Commun. 2025 Jun 6;16(1):5266. doi: 10.1038/s41467-025-60542-6.
8
Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target.
Cancer Cell. 2025 Jun 9;43(6):1141-1158.e11. doi: 10.1016/j.ccell.2025.04.014. Epub 2025 May 15.
9
Targeting site-specific N-glycosylated B7H3 induces potent antitumor immunity.
Nat Commun. 2025 Apr 14;16(1):3546. doi: 10.1038/s41467-025-58740-3.
10
The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling.
Chembiochem. 2025 May 27;26(10):e202500114. doi: 10.1002/cbic.202500114. Epub 2025 Apr 21.

本文引用的文献

1
Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry.
J Proteome Res. 2008 Oct;7(10):4566-76. doi: 10.1021/pr800468j. Epub 2008 Sep 10.
2
UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover.
Cell. 2008 Sep 5;134(5):804-16. doi: 10.1016/j.cell.2008.06.048.
3
Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.
Cell. 2008 Aug 22;134(4):668-78. doi: 10.1016/j.cell.2008.07.039.
4
Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry.
Nat Methods. 2008 Jun;5(6):459-60. doi: 10.1038/nmeth0608-459.
5
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex.
Cell. 2008 May 16;133(4):653-65. doi: 10.1016/j.cell.2008.04.012.
6
Systematic approach for validating the ubiquitinated proteome.
Anal Chem. 2008 Jun 1;80(11):4161-9. doi: 10.1021/ac702516a. Epub 2008 Apr 24.
7
Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo.
J Biol Chem. 2008 May 9;283(19):12797-810. doi: 10.1074/jbc.M801122200. Epub 2008 Mar 5.
8
Global changes to the ubiquitin system in Huntington's disease.
Nature. 2007 Aug 9;448(7154):704-8. doi: 10.1038/nature06022.
9
Sequential E2s drive polyubiquitin chain assembly on APC targets.
Cell. 2007 Jul 13;130(1):127-39. doi: 10.1016/j.cell.2007.05.027.
10
Signal integration in the endoplasmic reticulum unfolded protein response.
Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29. doi: 10.1038/nrm2199.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验