Suppr超能文献

利用分子建模探索多泛素构象的链接依赖性。

Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.

机构信息

Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20910, USA.

出版信息

J Mol Biol. 2010 Jan 29;395(4):803-14. doi: 10.1016/j.jmb.2009.10.039. Epub 2009 Oct 22.

Abstract

Posttranslational modification of proteins by covalent attachment of a small protein ubiquitin (Ub) or a polymeric chain of Ub molecules (called polyubiquitin) is involved in controlling a vast variety of processes in eukaryotic cells. The question of how different polyubiquitin signals are recognized is central to understanding the specificity of various types of polyubiquitination. In polyubiquitin, monomers are linked to each other via an isopeptide bond between the C-terminal glycine of one Ub and a lysine of the other. The functional outcome of polyubiquitination depends on the particular lysine involved in chain formation and appears to rely on linkage-dependent conformation of polyubiquitin. Thus, K48-linked chains, a universal signal for proteasomal degradation, under physiological conditions adopt a closed conformation where functionally important residues L8, I44, and V70 are sequestered at the interface between two adjacent Ub monomers. By contrast, K63-linked chains, which act as a nonproteolytic regulatory signal, adopt an extended conformation that lacks hydrophobic interubiquitin contact. Little is known about the functional roles of the so-called "noncanonical" chains (linked via K6, K11, K27, K29, or K33, or linked head-to-tail), and no structural information on these chains is available, except for information on the crystal structure of the head-to-tail-linked diubiquitin (Ub(2)). In this study, we use molecular modeling to examine whether any of the noncanonical chains can adopt a closed conformation similar to that in K48-linked polyubiquitin. Our results show that the eight possible Ub(2) chains can be divided into two groups: chains linked via K6, K11, K27, or K48 are predicted to form a closed conformation, whereas chains linked via K29, K33, or K63, or linked head-to-tail are unable to form such a contact due to steric occlusion. These predictions are validated by the known structures of K48-, K63-, and head-to-tail-linked chains. Our study also predicts structural models for Ub(2) chains linked via K6, K11, or K27. The implications of these findings for linkage-selective recognition of noncanonical polyubiquitin signals by various receptors are discussed.

摘要

蛋白质的翻译后修饰是通过共价连接一个小蛋白泛素(Ub)或 Ub 分子的聚合链(称为多泛素)来实现的,它参与了真核细胞中各种过程的控制。理解各种类型的多泛素化的特异性的核心问题是如何识别不同的多泛素信号。在多泛素中,单体通过一个 Ub 的 C 末端甘氨酸与另一个 Ub 的赖氨酸之间的异肽键相互连接。多泛素化的功能结果取决于参与链形成的特定赖氨酸,并且似乎依赖于多泛素化的连接依赖性构象。因此,K48 连接的链,一种普遍的蛋白酶体降解信号,在生理条件下采用一种封闭构象,其中功能重要的残基 L8、I44 和 V70 被隔离在两个相邻 Ub 单体的界面之间。相比之下,K63 连接的链作为一种非蛋白水解调节信号,采用一种扩展构象,缺乏疏水性的泛素间接触。关于所谓的“非典型”链(通过 K6、K11、K27、K29 或 K33 连接,或头对头连接)的功能作用知之甚少,并且除了对头对头连接的二泛素(Ub(2))的晶体结构信息外,没有这些链的结构信息。在这项研究中,我们使用分子建模来研究是否任何非典型链都可以采用类似于 K48 连接的多泛素的封闭构象。我们的结果表明,八个可能的 Ub(2)链可以分为两组:通过 K6、K11、K27 或 K48 连接的链预计会形成一种封闭构象,而通过 K29、K33 或 K63 连接的链,或头对头连接的链由于空间位阻而无法形成这种接触。这些预测通过已知的 K48、K63 和头对头连接的链的结构得到验证。我们的研究还预测了通过 K6、K11 或 K27 连接的 Ub(2)链的结构模型。讨论了这些发现对各种受体对非典型多泛素信号的连接选择性识别的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/2813430/d43a7f16e4bb/nihms155634f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验