Suppr超能文献

Aconitate and methyl aconitate are modulated by silicon in powdery mildew-infected wheat plants.

作者信息

Rémus-Borel Wilfried, Menzies James G, Bélanger Richard R

机构信息

Département de Phytologie, Université Laval, Sainte-Foy, QC, Canada G1K 7P4.

出版信息

J Plant Physiol. 2009 Sep 1;166(13):1413-22. doi: 10.1016/j.jplph.2009.02.011. Epub 2009 Apr 3.

Abstract

The accumulation of 5,6-O-methyl trans-aconitate in wheat was previously found to be linked with the presence of powdery mildew (Blumeria graminis) and silicon (Si) feeding. In this work, we sought to determine if trans-aconitate (TA) could act as a precursor of methylated forms of TA in wheat and if a relationship existed between Si treatment, disease development, TA and methyl TA concentration within wheat leaves. In absence of infection, TA concentration increased over time regardless of Si feeding. By contrast, TA concentration remained fairly constant over time in both Si(-) and Si(+)-infected plants but Si(+) plants had a significantly lower level than Si(-) plants. Conversely, methyl TA concentration increased in wheat leaves in response to infection and was linked to wheat's increased resistance induced by Si. The effect of Si feeding was only noticeable on methyl TA concentration in presence of the fungus. This suggests that Si does not act directly on TA concentration in leaves but somehow accentuate the production of methyl TA in stressed plants. Based on the concurrent increase in methyl TA and leveling off of TA concentration, it appears that the latter, instead of accumulating, is used by diseased plants to produce antifungal methylated forms of TA that would act as phytoalexins to limit disease development, a phenomenon more pronounced in plants treated with Si.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验