Suppr超能文献

有序数据的广义估计方程:关于工作相关结构的一则注释

Generalized estimating equations for ordinal data: a note on working correlation structures.

作者信息

Lumley T

机构信息

NHMRC Clinical Trials Centre, University of Sydney, New South Wales, Australia.

出版信息

Biometrics. 1996 Mar;52(1):354-61.

PMID:8934602
Abstract

Generalized estimating equations (Liang, K. Y. and Zeger, S., 1986, Biometrika 73, 13-22) allow longitudinal or clustered data to be modeled with minimal assumptions about their dependence structures. Association structures for polytomous data have generally required the estimation of a large number of parameters. In many applications involving repeated categorical data, an ordinal structure is present. A range of association structures and computational methods for ordinal categorical data is described, based on the cumulative odds ratio, which allows much more parsimonious models. This permits the generalized estimating equation methodology to be used for smaller sets of ordinal data and with less effort expended on modeling associations. The method is illustrated on sets of ordinal data from medical studies.

摘要

广义估计方程(梁,K.Y.和泽格,S.,1986年,《生物统计学》73卷,第13 - 22页)允许在对纵向或聚类数据的依赖结构做出最少假设的情况下对其进行建模。多分类数据的关联结构通常需要估计大量参数。在许多涉及重复分类数据的应用中,存在一种有序结构。基于累积优势比描述了一系列用于有序分类数据的关联结构和计算方法,这使得模型更加简洁。这允许将广义估计方程方法用于较小的有序数据集,并且在建模关联时花费更少的精力。该方法在医学研究的有序数据集上进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验