Suppr超能文献

根据基因与通路成员子集的共表达情况对基因进行排名。

Ranking genes by their co-expression to subsets of pathway members.

作者信息

Adler Priit, Peterson Hedi, Agius Phaedra, Reimand Jüri, Vilo Jaak

机构信息

Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

出版信息

Ann N Y Acad Sci. 2009 Mar;1158:1-13. doi: 10.1111/j.1749-6632.2008.03747.x.

Abstract

Cellular processes are often carried out by intricate systems of interacting genes and proteins. Some of these systems are rather well studied and described in pathway databases, while the roles and functions of the majority of genes are poorly understood. A large compendium of public microarray data is available that covers a variety of conditions, samples, and tissues and provides a rich source for genome-scale information. We focus our study on the analysis of 35 curated biological pathways in the context of gene co-expression over a large variety of biological conditions. By defining a global co-expression similarity rank for each gene and pathway, we perform exhaustive leave-one-out computations to describe existing pathway memberships using other members of the corresponding pathway as reference. We demonstrate that while successful in recovering biological base processes such as metabolism and translation, the global correlation measure fails to detect gene memberships in signaling pathways where co-expression is less evident. Our results also show that pathway membership detection is more effective when using only a subset of corresponding pathway members as reference, supporting the existence of more tightly co-expressed subsets of genes within pathways. Our study assesses the predictive power of global gene expression correlation measures in reconstructing biological systems of various functions and specificity. The developed computational network has immediate applications in detecting dubious pathway members and predicting novel member candidates.

摘要

细胞过程通常由相互作用的基因和蛋白质组成的复杂系统来执行。其中一些系统在通路数据库中已有相当深入的研究和描述,而大多数基因的作用和功能却知之甚少。现有大量公共微阵列数据汇编,涵盖了各种条件、样本和组织,为基因组规模的信息提供了丰富来源。我们的研究重点是在多种生物学条件下基因共表达的背景下,对35条经过整理的生物学通路进行分析。通过为每个基因和通路定义一个全局共表达相似性排名,我们进行了详尽的留一法计算,以使用相应通路的其他成员作为参考来描述现有的通路成员关系。我们证明,虽然在恢复诸如代谢和翻译等生物学基本过程方面取得了成功,但全局相关性度量未能检测到共表达不太明显的信号通路中的基因成员关系。我们的结果还表明,仅使用相应通路成员的一个子集作为参考时,通路成员检测更有效,这支持了通路内存在共表达更紧密的基因子集。我们的研究评估了全局基因表达相关性度量在重建各种功能和特异性的生物系统中的预测能力。所开发的计算网络在检测可疑通路成员和预测新的成员候选物方面有直接应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验