Suppr超能文献

网络医学在人类疾病研究中新兴的范式。

The emerging paradigm of network medicine in the study of human disease.

作者信息

Chan Stephen Y, Loscalzo Joseph

机构信息

Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Circ Res. 2012 Jul 20;111(3):359-74. doi: 10.1161/CIRCRESAHA.111.258541.

Abstract

The molecular pathways that govern human disease consist of molecular circuits that coalesce into complex, overlapping networks. These network pathways are presumably regulated in a coordinated fashion, but such regulation has been difficult to decipher using only reductionistic principles. The emerging paradigm of "network medicine" proposes to utilize insights garnered from network topology (eg, the static position of molecules in relation to their neighbors) as well as network dynamics (eg, the unique flux of information through the network) to understand better the pathogenic behavior of complex molecular interconnections that traditional methods fail to recognize. As methodologies evolve, network medicine has the potential to capture the molecular complexity of human disease while offering computational methods to discern how such complexity controls disease manifestations, prognosis, and therapy. This review introduces the fundamental concepts of network medicine and explores the feasibility and potential impact of network-based methods for predicting individual manifestations of human disease and designing rational therapies. Wherever possible, we emphasize the application of these principles to cardiovascular disease.

摘要

调控人类疾病的分子途径由分子回路组成,这些回路汇聚成复杂且相互重叠的网络。这些网络途径可能是以协调的方式进行调控的,但仅使用还原论原则很难解读这种调控。新兴的“网络医学”范式提议利用从网络拓扑(例如分子相对于其邻居的静态位置)以及网络动力学(例如信息在网络中的独特流动)中获得的见解,来更好地理解传统方法未能识别的复杂分子相互连接的致病行为。随着方法的不断发展,网络医学有潜力捕捉人类疾病的分子复杂性,同时提供计算方法来辨别这种复杂性如何控制疾病表现、预后和治疗。本综述介绍了网络医学的基本概念,并探讨了基于网络的方法在预测人类疾病个体表现和设计合理治疗方案方面的可行性和潜在影响。只要有可能,我们就强调这些原则在心血管疾病中的应用。

相似文献

3
Network based approach to drug discovery: a mini review.基于网络的药物发现方法:一篇综述短文
Mini Rev Med Chem. 2015;15(8):687-95. doi: 10.2174/1389557515666150219143933.
4
Network medicine in Cardiovascular Research.网络医学在心血管研究中的应用。
Cardiovasc Res. 2021 Aug 29;117(10):2186-2202. doi: 10.1093/cvr/cvaa321.
5
Regulatory patterns in molecular interaction networks.分子相互作用网络中的调控模式。
J Theor Biol. 2011 Nov 7;288:66-72. doi: 10.1016/j.jtbi.2011.08.015. Epub 2011 Aug 24.
6
Network systems biology for drug discovery.网络系统生物学在药物发现中的应用。
Clin Pharmacol Ther. 2010 Jul;88(1):120-5. doi: 10.1038/clpt.2010.91. Epub 2010 Jun 2.
7
A paradigm shift in medicine: A comprehensive review of network-based approaches.医学范式转变:基于网络方法的综合述评。
Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194416. doi: 10.1016/j.bbagrm.2019.194416. Epub 2019 Aug 2.
9
Network approaches to drug discovery.网络方法在药物发现中的应用。
Expert Opin Drug Discov. 2013 Jan;8(1):7-20. doi: 10.1517/17460441.2013.741119. Epub 2012 Nov 10.

引用本文的文献

1
What's next for computational systems biology?计算系统生物学的下一步是什么?
Front Syst Biol. 2023 Sep 19;3:1250228. doi: 10.3389/fsysb.2023.1250228. eCollection 2023.
3
Network physics of attractive colloidal gels: Resilience, rigidity, and phase diagram.吸引性胶体凝胶的网络物理学:弹性、刚性和相图。
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2316394121. doi: 10.1073/pnas.2316394121. Epub 2024 Jan 9.
4
7
Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping.表型组学和稳健的多组学数据在心血管疾病亚型分类中的应用。
Arterioscler Thromb Vasc Biol. 2023 Jul;43(7):1111-1123. doi: 10.1161/ATVBAHA.122.318892. Epub 2023 May 25.

本文引用的文献

3
Data-driven prediction of drug effects and interactions.基于数据的药物作用和相互作用预测。
Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.
4
Systems pharmacology of complex diseases.复杂疾病的系统药理学。
Ann N Y Acad Sci. 2011 Dec;1245:E1-5. doi: 10.1111/j.1749-6632.2011.06382.x.
9
Systems Biology Reveals MicroRNA-Mediated Gene Regulation.系统生物学揭示了微小RNA介导的基因调控。
Front Genet. 2011 Jun 23;2:29. doi: 10.3389/fgene.2011.00029. eCollection 2011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验