Gu Hongzhou, Chao Jie, Xiao Shou-Jun, Seeman Nadrian C
Department of Chemistry, New York University, New York, New York 10003, USA.
Nat Nanotechnol. 2009 Apr;4(4):245-8. doi: 10.1038/nnano.2009.5. Epub 2009 Feb 15.
The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such dynamic and functional control could lead to programmable chemical synthesis and nanoscale systems that are responsive to their environments. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce programmed nanomechanical devices and fixed or modified patterned lattices. Here, we demonstrate a dynamic form of patterning in which a pattern component is captured between two independently programmed DNA devices. A simple and robust error-correction protocol has been developed that yields programmed targets in all cases. This capture system can lead to dynamic control either on patterns or on programmed elements; this capability enables computation or a change of structural state as a function of information in the surroundings of the system.
纳米技术的目标是在我们需要的时候,将特定的原子和分子物种放置到我们想要的位置。实现这种动态和功能控制可能会带来可编程化学合成以及对环境有响应的纳米级系统。结构DNA纳米技术通过将具有粘性末端的稳定分支DNA基序相结合,提供了一条实现这一目标的有效途径,从而制造出可编程的纳米机械设备以及固定或修饰的图案化晶格。在这里,我们展示了一种动态图案化形式,其中一个图案组件被捕获在两个独立编程的DNA装置之间。我们开发了一种简单而强大的纠错协议,在所有情况下都能产生编程目标。这种捕获系统可以对图案或编程元素进行动态控制;这种能力使得系统能够根据其周围环境中的信息进行计算或改变结构状态。