Langlois Nicole I, Ma Kristine Y, Clark Heather A
Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA.
Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA.
Appl Phys Rev. 2023 Mar;10(1):011304. doi: 10.1063/5.0121820.
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance . In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs . Finally, the current understanding of the obstacles encountered along the journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
用于纳米制造的可编程生物材料的发展代表了生物医学和诊断学未来的一项重大进展。利用核酸的结构纳米技术的最新进展,使我们对用于生物应用的基于核酸的纳米结构(NANs)的理解取得了显著进展。随着NANs在结构和功能上变得更加多样化,以适应引入生命系统的需求,有必要了解如何控制关键设计特征以赋予所需性能。在这篇综述中,我们调查了用作结构构建块的核酸材料的范围(DNA、RNA和异源核酸)、纳米制造的几何形状的多样性以及使这些复合物功能化的策略。我们还评估了用于评估NANs的物理、机械、物理化学和生物学特性的现有和新兴表征工具。最后,将目前对这一过程中遇到的障碍的理解置于背景中,以展示NANs的形态特征如何影响它们的生物学命运。我们设想,这一总结将有助于研究人员设计新颖的NAN形态,指导表征工作和实验设计,并激发跨学科合作,以推动生物应用可编程平台的进步。