Suppr超能文献

对培养基气体含量和酸度进行精确的时间控制,并在芯片上为细胞培养生成一系列氧气浓度。

Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.

作者信息

Polinkovsky Mark, Gutierrez Edgar, Levchenko Andre, Groisman Alex

机构信息

Department of Physics, University of California, San Diego, , 9500 Gilman Drive, MC 0374, La Jolla, CA 92093, USA.

出版信息

Lab Chip. 2009 Apr 21;9(8):1073-84. doi: 10.1039/b816191g. Epub 2009 Feb 17.

Abstract

We describe the design, operation, and applications of two microfluidic devices that generate series of concentrations of oxygen, [O(2)], by on-chip gas mixing. Both devices are made of polydimethylsiloxane (PDMS) and have two layers of channels, the flow layer and the gas layer. By using in-situ measurements of [O(2)] with an oxygen-sensitive fluorescent dye, we show that gas diffusion through PDMS leads to equilibration of [O(2)] in an aqueous solution in the flow layer with [O(2)] in a gas injected into the gas layer on a time scale of approximately 1 sec. Injection of carbon dioxide into the gas layer causes the pH in the flow layer to drop within approximately 0.5 sec. Gas-mixing channel networks of both devices generate series of 9 gas mixtures with different [O(2)] from two gases fed to the inlets, thus creating regions with 9 different [O(2)] in the flow layer. The first device generates nitrogen-oxygen mixtures with [O(2)] varying linearly between 0 and 100%. The second device generates nitrogen-air mixtures with [O(2)] varying exponentially between 0 and 20.9%. The flow layers of the devices are designed for culturing bacteria in semi-permeable microchambers, and the second device is used to measure growth curves of E. coli colonies at 9 different [O(2)] in a single experiment. The cell division rates at [O(2)] of 0, 0.2, and 0.5% are found to be significantly different, further validating the capacity of the device to set [O(2)] in the flow layer with high precision and resolution. The degree of control of [O(2)] achieved in the devices and the robustness with respect to oxygen consumption due to respiration would be difficult to match in a traditional large-scale culture. The proposed devices and technology can be used in research on bacteria and yeast under microaerobic conditions and on mammalian cells under hypoxia.

摘要

我们描述了两种微流控装置的设计、操作及应用,这两种装置通过芯片上的气体混合来产生一系列不同浓度的氧气([O₂])。这两种装置均由聚二甲基硅氧烷(PDMS)制成,有两层通道,即流动层和气体层。通过使用对氧气敏感的荧光染料对[O₂]进行原位测量,我们发现气体通过PDMS扩散会使流动层水溶液中的[O₂]与注入气体层的气体中的[O₂]在大约1秒的时间尺度上达到平衡。向气体层注入二氧化碳会使流动层的pH值在大约0.5秒内下降。两种装置的气体混合通道网络从输入到入口的两种气体中产生一系列9种不同[O₂]的气体混合物,从而在流动层中形成具有9种不同[O₂]的区域。第一种装置产生氮气 - 氧气混合物,其中[O₂]在0至100%之间线性变化。第二种装置产生氮气 - 空气混合物,其中[O₂]在0至20.9%之间呈指数变化。装置的流动层设计用于在半透性微腔中培养细菌,第二种装置用于在单个实验中测量大肠杆菌菌落在9种不同[O₂]条件下的生长曲线。发现在[O₂]为0%、0.2%和0.5%时的细胞分裂速率有显著差异,进一步验证了该装置在流动层中高精度和高分辨率设置[O₂]的能力。在传统大规模培养中,很难达到这些装置所实现的[O₂]控制程度以及对呼吸引起的氧气消耗的稳健性。所提出的装置和技术可用于微需氧条件下细菌和酵母的研究以及缺氧条件下哺乳动物细胞的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验