Suppr超能文献

用于PET图像中呼吸运动校正的正则化B样条可变形配准

Regularized B-spline deformable registration for respiratory motion correction in PET images.

作者信息

Bai Wenjia, Brady Michael

机构信息

Wolfson Medical Vision Laboratory, Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.

出版信息

Phys Med Biol. 2009 May 7;54(9):2719-36. doi: 10.1088/0031-9155/54/9/008. Epub 2009 Apr 8.

Abstract

A major challenge in thoracic PET imaging is respiratory motion, which degrades image quality to the extent that it can affect subsequent diagnosis and patient management. This paper presents an approach to overcoming this problem using a deformable registration algorithm for respiratory gated PET images. Registration is based entirely on PET images without increasing the radiation burden. A Markov random field regularizer is introduced to the registration, which penalizes noisy deformation fields. Experimental results on both simulated and real data show that regularized registration effectively suppresses the noise in images, yielding satisfactory deformation fields. In addition, motion correction using the registration algorithm significantly improves the quality of PET images.

摘要

胸部正电子发射断层显像(PET)成像中的一个主要挑战是呼吸运动,它会降低图像质量,进而影响后续诊断和患者管理。本文提出了一种使用可变形配准算法处理呼吸门控PET图像来克服这一问题的方法。配准完全基于PET图像,而不会增加辐射负担。在配准中引入了马尔可夫随机场正则化器,它会抑制有噪声的变形场。在模拟数据和真实数据上的实验结果表明,正则化配准有效地抑制了图像中的噪声,产生了令人满意的变形场。此外,使用该配准算法进行运动校正可显著提高PET图像的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验