Trevino Andrea, Coleman Todd P, Allen Jont
Department of Electrical & Computer Engineering Neuroscience Program, University of Illinois, Urbana, USA.
J Comput Neurosci. 2010 Aug;29(1-2):193-201. doi: 10.1007/s10827-009-0146-6. Epub 2009 Apr 8.
In this paper, we develop a dynamical point process model for how complex sounds are represented by neural spiking in auditory nerve fibers. Although many models have been proposed, our point process model is the first to capture elements of spontaneous rate, refractory effects, frequency selectivity, phase locking at low frequencies, and short-term adaptation, all within a compact parametric approach. Using a generalized linear model for the point process conditional intensity, driven by extrinsic covariates, previous spiking, and an input-dependent charging/discharging capacitor model, our approach robustly captures the aforementioned features on datasets taken at the auditory nerve of chinchilla in response to speech inputs. We confirm the goodness of fit of our approach using the Time-Rescaling Theorem for point processes.
在本文中,我们开发了一个动态点过程模型,用于研究听觉神经纤维中的神经放电如何表征复杂声音。尽管已经提出了许多模型,但我们的点过程模型是第一个在紧凑的参数化方法中捕捉自发率、不应期效应、频率选择性、低频锁相和短期适应等要素的模型。通过使用由外部协变量、先前的放电以及与输入相关的充电/放电电容器模型驱动的点过程条件强度的广义线性模型,我们的方法在针对龙猫听觉神经采集的、响应语音输入的数据集上稳健地捕捉了上述特征。我们使用点过程的时间重标定理证实了我们方法的拟合优度。