Suppr超能文献

一种用于建模听神经电刺激的点过程框架。

A point process framework for modeling electrical stimulation of the auditory nerve.

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA, USA.

出版信息

J Neurophysiol. 2012 Sep;108(5):1430-52. doi: 10.1152/jn.00095.2012. Epub 2012 Jun 6.

Abstract

Model-based studies of responses of auditory nerve fibers to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe spiking activity while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of individual auditory nerve fibers that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semianalytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data of response to high and low pulse rate stimulation. We find that the model, although constructed to fit data from single and paired pulse experiments, can accurately predict responses to unmodulated and modulated pulse train stimuli. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.

摘要

基于模型的听觉神经纤维对电刺激反应的研究可以深入了解人工耳蜗的工作原理。理想情况下,这些研究可以识别声音处理策略的局限性,并为向人工耳蜗使用者提供声音信息的改进方法提供指导。为此,模型必须准确描述尖峰活动,同时避免过度复杂,从而排除大规模模拟听觉神经纤维群体并掩盖对影响声音信息神经编码机制的洞察力。本着这种精神,我们开发了一种个体听觉神经纤维的点过程模型,该模型对电刺激的神经反应提供了紧凑而准确的描述。受广义线性模型框架的启发,所提出的模型由一系列线性和非线性阶段组成。我们展示了如何将每个阶段与生物物理机制相关联,并与神经元动力学模型相关联。此外,我们推导出了一种半分析程序,可以根据单个纤维对电刺激反应的记录中的基本统计数据,唯一地确定模型中的每个参数,包括阈值、相对扩散、抖动和时程。该模型还考虑了影响听觉神经纤维对高脉冲率刺激反应的不应期和总和效应。在整个过程中,我们将模型预测与高脉冲率和低脉冲率刺激的生理数据进行比较。我们发现,尽管该模型是为拟合单脉冲和双脉冲实验的数据而构建的,但它可以准确预测未调制和调制脉冲串刺激的反应。最后,我们对模拟的尖峰序列对正弦幅度调制刺激的反应进行了理想观察者分析,并发现载波脉冲率不会影响调制检测阈值。

相似文献

1
A point process framework for modeling electrical stimulation of the auditory nerve.
J Neurophysiol. 2012 Sep;108(5):1430-52. doi: 10.1152/jn.00095.2012. Epub 2012 Jun 6.
2
Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
J Comput Neurosci. 2010 Jun;28(3):405-24. doi: 10.1007/s10827-010-0224-9. Epub 2010 Feb 23.
4
Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
Hear Res. 2017 Aug;351:116-129. doi: 10.1016/j.heares.2017.06.004. Epub 2017 Jun 13.
5
A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
Hear Res. 2016 Nov;341:130-143. doi: 10.1016/j.heares.2016.08.011. Epub 2016 Sep 2.
6
Renewal-process approximation of a stochastic threshold model for electrical neural stimulation.
J Comput Neurosci. 2000 Sep-Oct;9(2):119-32. doi: 10.1023/a:1008942623671.
7
Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
J Assoc Res Otolaryngol. 2010 Dec;11(4):641-56. doi: 10.1007/s10162-010-0225-4. Epub 2010 Jul 15.
8
Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.
Hear Res. 2024 Jun;447:109011. doi: 10.1016/j.heares.2024.109011. Epub 2024 Apr 24.
9
Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
Hear Res. 2017 Aug;351:19-33. doi: 10.1016/j.heares.2017.05.007. Epub 2017 May 19.

引用本文的文献

1
Age effect on inter-pulse interval selection for ECAP measurement.
Front Neurosci. 2025 Aug 29;19:1647513. doi: 10.3389/fnins.2025.1647513. eCollection 2025.
2
A deep learning framework for understanding cochlear implants.
bioRxiv. 2025 Jul 21:2025.07.16.665227. doi: 10.1101/2025.07.16.665227.
4
An Adaptive Leaky-Integrate and Firing Probability Model of an Electrically Stimulated Auditory Nerve Fiber.
Trends Hear. 2024 Jan-Dec;28:23312165241286742. doi: 10.1177/23312165241286742.
5
Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users.
Hear Res. 2024 Jul;448:109026. doi: 10.1016/j.heares.2024.109026. Epub 2024 May 16.
6
Cochlear Implant Users can Effectively Combine Place and Timing Cues for Pitch Perception.
Ear Hear. 2023;44(6):1410-1422. doi: 10.1097/AUD.0000000000001383. Epub 2023 Oct 20.
8
A Computational Model of a Single Auditory Nerve Fiber for Electric-Acoustic Stimulation.
J Assoc Res Otolaryngol. 2022 Dec;23(6):835-858. doi: 10.1007/s10162-022-00870-2. Epub 2022 Nov 4.
10
Computational Modeling of Synchrony in the Auditory Nerve in Response to Acoustic and Electric Stimulation.
Front Comput Neurosci. 2022 Jun 17;16:889992. doi: 10.3389/fncom.2022.889992. eCollection 2022.

本文引用的文献

1
Acoustic temporal modulation detection and speech perception in cochlear implant listeners.
J Acoust Soc Am. 2011 Jul;130(1):376-88. doi: 10.1121/1.3592521.
2
Designing optimal stimuli to control neuronal spike timing.
J Neurophysiol. 2011 Aug;106(2):1038-53. doi: 10.1152/jn.00427.2010. Epub 2011 Apr 20.
3
A point process model for auditory neurons considering both their intrinsic dynamics and the spectrotemporal properties of an extrinsic signal.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1507-10. doi: 10.1109/TBME.2011.2113349. Epub 2011 Feb 10.
6
Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
J Assoc Res Otolaryngol. 2010 Dec;11(4):641-56. doi: 10.1007/s10162-010-0225-4. Epub 2010 Jul 15.
8
Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
J Comput Neurosci. 2010 Jun;28(3):405-24. doi: 10.1007/s10827-010-0224-9. Epub 2010 Feb 23.
9
The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
J Assoc Res Otolaryngol. 2010 Jun;11(2):283-96. doi: 10.1007/s10162-009-0199-2. Epub 2009 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验