Suppr超能文献

使用径向IDEAL-GRASE技术通过T2映射进行快速水脂成像。

Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique.

作者信息

Li Zhiqiang, Graff Christian, Gmitro Arthur F, Squire Scott W, Bilgin Ali, Outwater Eric K, Altbach Maria I

机构信息

Department of Radiology, University of Arizona, Tucson, Arizona 85724, USA.

出版信息

Magn Reson Med. 2009 Jun;61(6):1415-24. doi: 10.1002/mrm.21918.

Abstract

Three-point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin-echo acquisition strategy (IDEAL-GRASE) to provide a time-efficient method for lipid-water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL-GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high-resolution T(2) maps in addition to the water and fat images. The radial IDEAL-GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging.

摘要

三点 Dixon 方法已被研究作为一种在没有场不均匀性影响的情况下生成水和脂肪图像的手段。最近,一种迭代算法(IDEAL,具有回波不对称性和最小二乘估计的水和脂肪迭代分解)与梯度和自旋回波采集策略(IDEAL-GRASE)相结合,以提供一种时间高效的脂质-水成像方法,并校正场不均匀性的影响。本文提出的方法将 IDEAL-GRASE 与径向数据采集相结合。径向数据采样对笛卡尔轨迹上的运动具有鲁棒性,并且除了水和脂肪图像之外还具有生成高分辨率 T(2) 图的可能性。径向 IDEAL-GRASE 技术在体模和体内进行了演示,用于包括腹部、盆腔和心脏成像在内的各种应用。

相似文献

1
Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique.
Magn Reson Med. 2009 Jun;61(6):1415-24. doi: 10.1002/mrm.21918.
2
Fast decomposition of water and lipid using a GRASE technique with the IDEAL algorithm.
Magn Reson Med. 2007 Jun;57(6):1047-57. doi: 10.1002/mrm.21232.
3
Water-fat separation with parallel imaging based on BLADE.
Magn Reson Imaging. 2013 Jun;31(5):656-63. doi: 10.1016/j.mri.2012.10.018. Epub 2013 Jan 3.
4
Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator.
Magn Reson Med. 2015 Mar;73(3):964-72. doi: 10.1002/mrm.25191. Epub 2014 Apr 10.
5
Turboprop IDEAL: a motion-resistant fat-water separation technique.
Magn Reson Med. 2009 Jan;61(1):188-95. doi: 10.1002/mrm.21825.
6
Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction.
Magn Reson Med. 1997 Dec;38(6):884-9. doi: 10.1002/mrm.1910380606.
7
Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI.
Invest Radiol. 2024 Dec 1;59(12):805-812. doi: 10.1097/RLI.0000000000001092. Epub 2024 Jun 10.
9
A flexible fast spin echo triple-echo Dixon technique.
Magn Reson Med. 2017 Mar;77(3):1049-1057. doi: 10.1002/mrm.26186. Epub 2016 Mar 8.
10
Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence.
Neuroimage. 2012 Oct 15;63(1):533-9. doi: 10.1016/j.neuroimage.2012.06.064. Epub 2012 Jul 6.

引用本文的文献

1
Concurrent water T and fat fraction mapping of the breast using the radial gradient and spin echo (RADGRASE) pulse sequence.
Magn Reson Imaging. 2025 May;118:110355. doi: 10.1016/j.mri.2025.110355. Epub 2025 Feb 5.
2
The relaxometry hype cycle.
Front Physiol. 2023 Nov 9;14:1281147. doi: 10.3389/fphys.2023.1281147. eCollection 2023.
3
The CALIPR framework for highly accelerated myelin water imaging with improved precision and sensitivity.
Sci Adv. 2023 Nov 3;9(44):eadh9853. doi: 10.1126/sciadv.adh9853. Epub 2023 Nov 1.
4
Reproducible automated breast density measure with no ionizing radiation using fat-water decomposition MRI.
J Magn Reson Imaging. 2018 Oct;48(4):971-981. doi: 10.1002/jmri.26041. Epub 2018 Apr 6.
5
Segmentation and quantification of adipose tissue by magnetic resonance imaging.
MAGMA. 2016 Apr;29(2):259-76. doi: 10.1007/s10334-015-0498-z. Epub 2015 Sep 4.
6
Automated breast segmentation of fat and water MR images using dynamic programming.
Acad Radiol. 2015 Feb;22(2):139-48. doi: 10.1016/j.acra.2014.09.015.
7
Measurement of liver fat fraction and iron with MRI and MR spectroscopy techniques.
Diagn Interv Radiol. 2014 Jan-Feb;20(1):17-26. doi: 10.5152/dir.2013.13124.
8
High-resolution 3D radial bSSFP with IDEAL.
Magn Reson Med. 2014 Jan;71(1):95-104. doi: 10.1002/mrm.24633. Epub 2013 Mar 15.
10
Quantitative Assessment of Liver Fat with Magnetic Resonance Imaging and Spectroscopy.
J Magn Reson Imaging. 2011 Oct;34(4):729-749. doi: 10.1002/jmri.22775. Epub 2011 Sep 16.

本文引用的文献

1
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
2
Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation.
J Magn Reson Imaging. 2007 Oct;26(4):1153-61. doi: 10.1002/jmri.21090.
4
Fast decomposition of water and lipid using a GRASE technique with the IDEAL algorithm.
Magn Reson Med. 2007 Jun;57(6):1047-57. doi: 10.1002/mrm.21232.
8
Cramér-Rao bounds for three-point decomposition of water and fat.
Magn Reson Med. 2005 Sep;54(3):625-35. doi: 10.1002/mrm.20623.
10
Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession.
J Magn Reson Imaging. 2005 Jul;22(1):44-52. doi: 10.1002/jmri.20327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验