Suppr超能文献

磁共振弹性成像作为评估心肌硬度的一种方法:与心脏左心室模型中已建立的压力-容积模型的比较。

MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure-volume model in a left ventricular model of the heart.

作者信息

Kolipaka Arunark, McGee Kiaran P, Araoz Philip A, Glaser Kevin J, Manduca Armando, Romano Anthony J, Ehman Richard L

机构信息

Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Magn Reson Med. 2009 Jul;62(1):135-40. doi: 10.1002/mrm.21991.

Abstract

Magnetic resonance elastography (MRE) measurements of shear stiffness (mu) in a spherical phantom experiencing both static and cyclic pressure variations were compared to those derived from an established pressure-volume (P-V)-based model. A spherical phantom was constructed using a silicone rubber composite of 10 cm inner diameter and 1.3 cm thickness. A gradient echo MRE sequence was used to determine mu within the phantom at static and cyclic pressures ranging from 55 to 90 mmHg. Average values of mu using MRE were obtained within a region of interest and were compared to the P-V-derived estimates. Under both static and cyclic pressure conditions, the P-V- and MRE-based estimates of mu ranged from 98.2 to 155.1 kPa and 96.2 to 150.8 kPa, respectively. Correlation coefficients (R(2)) of 0.98 and 0.97 between the P-V and MRE-based estimates of shear stiffness measurements were obtained. For both static and cyclic pressures, MRE-based measures of mu agree with those derived from a P-V model, suggesting that MRE can be used as a new, noninvasive method of assessing mu in sphere-like fluid-filled organs such as the heart.

摘要

将经历静态和循环压力变化的球形体模中的剪切刚度(μ)的磁共振弹性成像(MRE)测量结果与基于已建立的压力-容积(P-V)模型得出的结果进行比较。使用内径为10 cm、厚度为1.3 cm的硅橡胶复合材料构建一个球形体模。使用梯度回波MRE序列在55至90 mmHg的静态和循环压力下确定体模内的μ。在感兴趣区域内获得使用MRE的μ的平均值,并与基于P-V得出的估计值进行比较。在静态和循环压力条件下,基于P-V和MRE的μ估计值分别为98.2至155.1 kPa和96.2至150.8 kPa。基于P-V和MRE的剪切刚度测量估计值之间的相关系数(R²)分别为0.98和0.97。对于静态和循环压力,基于MRE的μ测量值与从P-V模型得出的测量值一致,这表明MRE可以用作评估诸如心脏等类球形充满液体器官中μ的一种新的非侵入性方法。

相似文献

2
Evaluation of a rapid, multiphase MRE sequence in a heart-simulating phantom.
Magn Reson Med. 2009 Sep;62(3):691-8. doi: 10.1002/mrm.22048.
3
Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
Magn Reson Med. 2017 Mar;77(3):1184-1192. doi: 10.1002/mrm.26207. Epub 2016 Mar 26.
4
In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography.
J Magn Reson Imaging. 2017 Mar;45(3):813-820. doi: 10.1002/jmri.25423. Epub 2016 Aug 26.
5
Magnetic resonance elastography as a method to estimate myocardial contractility.
J Magn Reson Imaging. 2012 Jul;36(1):120-7. doi: 10.1002/jmri.23616. Epub 2012 Feb 14.
8
Quantification of regional aortic stiffness using MR elastography: A phantom and ex-vivo porcine aorta study.
Magn Reson Imaging. 2016 Feb;34(2):91-6. doi: 10.1016/j.mri.2015.10.011. Epub 2015 Oct 24.
9
Strain measurement in the left ventricle during systole with deformable image registration.
Med Image Anal. 2009 Apr;13(2):354-61. doi: 10.1016/j.media.2008.07.004. Epub 2008 Sep 17.
10
Rapid MR elastography using selective excitations.
Magn Reson Med. 2006 Jun;55(6):1381-9. doi: 10.1002/mrm.20913.

引用本文的文献

1
CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction.
Eur Heart J Cardiovasc Imaging. 2024 Oct 30;25(11):1491-1504. doi: 10.1093/ehjci/jeae224.
2
Wavelet MRE: Imaging propagating broadband acoustic waves with wavelet-based motion-encoding gradients.
Magn Reson Med. 2024 May;91(5):1923-1935. doi: 10.1002/mrm.29972. Epub 2023 Dec 14.
4
Lorentz force induced shear waves for magnetic resonance elastography applications.
Sci Rep. 2021 Jun 17;11(1):12785. doi: 10.1038/s41598-021-91895-9.
6
Nonlinear Inversion MR Elastography With Low-Frequency Actuation.
IEEE Trans Med Imaging. 2020 May;39(5):1775-1784. doi: 10.1109/TMI.2019.2958212. Epub 2019 Dec 6.
7
Magnetic resonance elastography in nonlinear viscoelastic materials under load.
Biomech Model Mechanobiol. 2019 Feb;18(1):111-135. doi: 10.1007/s10237-018-1072-1. Epub 2018 Aug 27.
8
Phantom evaluations of nonlinear inversion MR elastography.
Phys Med Biol. 2018 Jul 19;63(14):145021. doi: 10.1088/1361-6560/aacb08.
9
Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.
Int J Numer Method Biomed Eng. 2018 Jun;34(6):e2979. doi: 10.1002/cnm.2979. Epub 2018 Apr 23.
10
Assessment of Diastolic Function Using Ultrasound Elastography.
Ultrasound Med Biol. 2018 Mar;44(3):551-561. doi: 10.1016/j.ultrasmedbio.2017.11.011. Epub 2018 Jan 10.

本文引用的文献

3
Assessment of hepatic fibrosis with magnetic resonance elastography.
Clin Gastroenterol Hepatol. 2007 Oct;5(10):1207-1213.e2. doi: 10.1016/j.cgh.2007.06.012.
5
Fractional encoding of harmonic motions in MR elastography.
Magn Reson Med. 2007 Feb;57(2):388-95. doi: 10.1002/mrm.21152.
6
MR elastography of the liver: preliminary results.
Radiology. 2006 Aug;240(2):440-8. doi: 10.1148/radiol.2402050606.
7
Current perspectives in diastolic dysfunction and diastolic heart failure.
Heart. 2006 May;92(5):712-8. doi: 10.1136/hrt.2005.062950.
8
Real-time imaging of regional myocardial function using fast-SENC.
Magn Reson Med. 2006 Feb;55(2):386-95. doi: 10.1002/mrm.20770.
9
Determination of thigh muscle stiffness using magnetic resonance elastography.
J Magn Reson Imaging. 2006 Feb;23(2):242-7. doi: 10.1002/jmri.20487.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验