Suppr超能文献

超极化锂-6作为纳摩尔造影剂的传感器。

Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents.

作者信息

van Heeswijk Ruud B, Uffmann Kai, Comment Arnaud, Kurdzesau Fiodar, Perazzolo Chiara, Cudalbu Cristina, Jannin Sami, Konter Jacobus A, Hautle Patrick, van den Brandt Ben, Navon Gil, van der Klink Jacques J, Gruetter Rolf

机构信息

Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

Magn Reson Med. 2009 Jun;61(6):1489-93. doi: 10.1002/mrm.21952.

Abstract

Lithium is widely used in psychotherapy. The (6)Li isotope has a long intrinsic longitudinal relaxation time T(1) on the order of minutes, making it an ideal candidate for hyperpolarization experiments. In the present study we demonstrated that lithium-6 can be readily hyperpolarized within 30 min, while retaining a long polarization decay time on the order of a minute. We used the intrinsically long relaxation time for the detection of 500 nM contrast agent in vitro. Hyperpolarized lithium-6 was administered to the rat and its signal retained a decay time on the order of 70 sec in vivo. Localization experiments imply that the lithium signal originated from within the brain and that it was detectable up to 5 min after administration. We conclude that the detection of submicromolar contrast agents using hyperpolarized NMR nuclei such as (6)Li may provide a novel avenue for molecular imaging.

摘要

锂广泛应用于心理治疗。锂-6同位素具有长达数分钟的固有纵向弛豫时间T(1),这使其成为超极化实验的理想候选对象。在本研究中,我们证明了锂-6能够在30分钟内轻松实现超极化,同时保持长达一分钟左右的极化衰减时间。我们利用其固有的长弛豫时间在体外检测500 nM的造影剂。将超极化的锂-6注射到大鼠体内,其信号在体内的衰减时间约为70秒。定位实验表明,锂信号源自大脑内部,并且在注射后长达5分钟都可检测到。我们得出结论,使用诸如锂-6等超极化核磁共振核来检测亚微摩尔级的造影剂可能为分子成像提供一条新途径。

相似文献

1
Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents.
Magn Reson Med. 2009 Jun;61(6):1489-93. doi: 10.1002/mrm.21952.
3
Hyperpolarized (6)Li as a probe for hemoglobin oxygenation level.
Contrast Media Mol Imaging. 2016 Jan-Feb;11(1):41-6. doi: 10.1002/cmmi.1656. Epub 2015 Aug 11.
4
Short TE (7) Li-MRS confirms Bi-exponential lithium T2 relaxation in humans and clearly delineates two patient subtypes.
J Magn Reson Imaging. 2013 Jun;37(6):1451-9. doi: 10.1002/jmri.23935. Epub 2012 Nov 12.
5
In vivo 7Li NMR diffusion studies in rat brain.
Magn Reson Imaging. 1994;12(3):523-9. doi: 10.1016/0730-725x(94)92546-1.
6
Localized 7Li MR spectroscopy: in vivo brain and serum concentrations in the rat.
Magn Reson Med. 2004 Nov;52(5):1087-92. doi: 10.1002/mrm.20250.
7
In vivo 7Li NMR imaging and localized spectroscopy of rat brain.
Magn Reson Med. 1992 Jun;25(2):308-18. doi: 10.1002/mrm.1910250209.
8
Localized 7Li MR spectroscopy and spin relaxation in rat brain in vivo.
Magn Reson Med. 2004 Jul;52(1):164-8. doi: 10.1002/mrm.20112.
9
Hyperpolarized choline as an MR imaging molecular probe: feasibility of in vivo imaging in a rat model.
J Magn Reson Imaging. 2015 Apr;41(4):917-23. doi: 10.1002/jmri.24659. Epub 2014 May 27.
10
The distribution of lithium in rat brain and muscle in vivo by 7Li NMR imaging.
Magn Reson Med. 1997 Aug;38(2):275-8. doi: 10.1002/mrm.1910380217.

引用本文的文献

1
Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized C magnetic resonance experiments on enzyme systems.
Magn Reson (Gott). 2021 Jun 15;2(1):421-446. doi: 10.5194/mr-2-421-2021. eCollection 2021.
4
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances.
MAGMA. 2021 Feb;34(1):5-23. doi: 10.1007/s10334-020-00894-w. Epub 2020 Nov 13.
5
Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei.
MAGMA. 2020 Apr;33(2):221-256. doi: 10.1007/s10334-019-00807-6. Epub 2019 Dec 6.
6
Probing carbohydrate metabolism using hyperpolarized C-labeled molecules.
NMR Biomed. 2019 Oct;32(10):e4018. doi: 10.1002/nbm.4018. Epub 2018 Nov 26.
7
Metabolic and Molecular Imaging with Hyperpolarised Tracers.
Mol Imaging Biol. 2018 Dec;20(6):902-918. doi: 10.1007/s11307-018-1265-0.
8
Biochemical phosphates observed using hyperpolarized P in physiological aqueous solutions.
Nat Commun. 2017 Aug 24;8(1):341. doi: 10.1038/s41467-017-00364-3.
9
A New Horizon of DNP technology: Application to In-vivo C Magnetic Resonance Spectroscopy and Imaging.
Biophys Rev. 2013 Sep 1;5(3):271-281. doi: 10.1007/s12551-012-0099-2. Epub 2013 Jan 9.

本文引用的文献

1
A 140 GHz prepolarizer for dissolution dynamic nuclear polarization.
J Chem Phys. 2008 Jun 28;128(24):241102. doi: 10.1063/1.2951994.
2
Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate.
Nature. 2008 Jun 12;453(7197):940-3. doi: 10.1038/nature07017. Epub 2008 May 28.
3
Pharmacotherapy of mood disorders.
Annu Rev Clin Psychol. 2008;4:53-91. doi: 10.1146/annurev.clinpsy.2.022305.095301.
4
Lithium salts in the treatment of psychotic excitement.
Med J Aust. 1949 Sep 3;2(10):349-52. doi: 10.1080/j.1440-1614.1999.06241.x.
5
Relaxivity of Gd-based contrast agents on X nuclei with long intrinsic relaxation times in aqueous solutions.
Magn Reson Imaging. 2007 Jul;25(6):821-5. doi: 10.1016/j.mri.2007.02.015. Epub 2007 Apr 19.
6
Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis.
Cancer Res. 2006 Nov 15;66(22):10855-60. doi: 10.1158/0008-5472.CAN-06-2564.
7
Pharmacokinetics of lithium in rat brain regions by spectroscopic imaging.
Magn Reson Imaging. 2005 Oct;23(8):859-63. doi: 10.1016/j.mri.2005.07.007. Epub 2005 Oct 13.
8
Distribution of parenterally administered lithium in plasma, brain and muscle of rats.
Am J Physiol. 1950 Dec;163(3):633-41. doi: 10.1152/ajplegacy.1950.163.3.633.
9
Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR.
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63. doi: 10.1073/pnas.1733835100. Epub 2003 Aug 20.
10
Lithium visibility in rat brain and muscle in vivo by 7Li NMR imaging.
J Magn Reson. 1998 Jul;133(1):98-103. doi: 10.1006/jmre.1998.1435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验